Adaptive Kalman Filtering Developed from Recursive Least Squares Forgetting Algorithms (2024)

Brian Lai and Dennis S. Bernstein Brian Lai and Dennis S. Bernstein are with the Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI, USA. {brianlai, dsbaero}@umich.edu. This work was supported by the NSF Graduate Research Fellowship under Grant No. DGE 1841052.

Abstract

Recursive least squares (RLS) is derived as the recursive minimizer of the least-squares cost function.Moreover, it is well known that RLS is a special case of the Kalman filter.This work presents the Kalman filter least squares (KFLS) cost function, whose recursive minimizer gives the Kalman filter.KFLS is an extension of generalized forgetting recursive least squares (GF-RLS), a general framework which contains various extensions of RLS from the literature as special cases.This then implies that extensions of RLS are also special cases of the Kalman filter.Motivated by this connection, we propose an algorithm that combines extensions of RLS with the Kalman filter, resulting in a new class of adaptive Kalman filters.A numerical example shows that one such adaptive Kalman filter provides improved state estimation for a mass-spring-damper with intermittent, unmodeled collisions.This example suggests that such adaptive Kalman filtering may provide potential benefits for systems with non-classical disturbances.

I Introduction

Despite their respective deterministic and stochastic foundations, least-squares and the Kalman filter share an interconnected history [1].It is well known that the update equations for recursive least squares (RLS) (e.g. [2]) are the same as those of the Kalman filter with, for all k≄0𝑘0k\geq 0italic_k ≄ 0, identity state matrix Ak=IsubscriptđŽđ‘˜đŒA_{k}=Iitalic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = italic_I, zero input matrix Bk=0subscriptđ”đ‘˜0B_{k}=0italic_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = 0, process noise covariance ÎŁk=0subscriptΣ𝑘0\Sigma_{k}=0roman_ÎŁ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = 0, and measurement noise covariance Γk=IsubscriptÎ“đ‘˜đŒ\Gamma_{k}=Iroman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = italic_I (see p.51 of [3], section 3.3.5 of [4], or p.129 of [5]).As RLS became a foundational algorithm of systems and control theory for online identification of fixed parameters [6, 3], numerous extensions of RLS were developed (e.g. [7, 8, 9, 10, 11, 12, 13, 14, 15, 16]) to improve identification of time-varying parameters.However, little work has been done to connect these extensions to the Kalman filter.

The RLS update equations are often derived as the recursive minimizer of a least squares cost function (e.g. [2]).A natural question is whether the RLS cost function can be generalized to derive the Kalman filter.While other deterministic derivations of the Kalman filter have been presented (e.g. [17, 18]), these do not follow as an extension of the RLS cost.

This work presents the Kalman filter least squares (KFLS) cost function whose recursive minimizer gives the Kalman filter update equations.KFLS is an extension of generalized forgetting recursive least squares (GF-RLS) [19], which contains various extensions of RLS from the literature as special cases.As a result, these extensions of RLS are also special cases of the Kalman filter with particular choices of the process noise covariance matrix.

This result motivates a new class of adaptive Kalman filtering, with modified prior covariance update equations to incorporate forgetting from extensions of RLS.A brief survey is given to show how several forgetting methods from the RLS literature can be applied to adaptive Kalman filtering.A numerical example shows how adaptive Kalman filtering with robust variable forgetting factor [14] improves state estimation of a mass-spring-damper system with intermittent, unmodeled collisions.This example suggests that such an adaptive Kalman filtering may be beneficial when disturbances are non-classical.

I-1 Notation and Terminology

For symmetric P,Q∈ℝn×n𝑃𝑄superscriptℝ𝑛𝑛P,Q\in{\mathbb{R}}^{n\times n}italic_P , italic_Q ∈ blackboard_R start_POSTSUPERSCRIPT italic_n × italic_n end_POSTSUPERSCRIPT, Pâ‰șQprecedes𝑃𝑄P\prec Qitalic_P â‰ș italic_Q (respectively, PâȘŻQprecedes-or-equals𝑃𝑄P\preceq Qitalic_P âȘŻ italic_Q) denotes that Q−P𝑄𝑃Q-Pitalic_Q - italic_P is positive definite (respectively, positive semidefinite).For all x∈ℝnđ‘„superscriptℝ𝑛x\in{\mathbb{R}}^{n}italic_x ∈ blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT, let ‖x‖≜xT⁹x≜normđ‘„superscriptđ‘„Tđ‘„\|x\|\triangleq\sqrt{x^{\rm T}x}∄ italic_x ∄ ≜ square-root start_ARG italic_x start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT italic_x end_ARG.For x∈ℝnđ‘„superscriptℝ𝑛x\in{\mathbb{R}}^{n}italic_x ∈ blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT and positive-semidefinite R∈ℝn×n𝑅superscriptℝ𝑛𝑛R\in{\mathbb{R}}^{n\times n}italic_R ∈ blackboard_R start_POSTSUPERSCRIPT italic_n × italic_n end_POSTSUPERSCRIPT, ‖x‖R≜xT⁹R⁹x≜subscriptnormđ‘„đ‘…superscriptđ‘„Tđ‘…đ‘„\|x\|_{R}\triangleq\sqrt{x^{\rm T}Rx}∄ italic_x ∄ start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ≜ square-root start_ARG italic_x start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT italic_R italic_x end_ARG.

II Background Material

II-A The one-step Kalman Filter

Consider the discrete-time, linear, time-varying system

xk+1subscriptđ‘„đ‘˜1\displaystyle x_{k+1}italic_x start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT=Ak⁹xk+Bk⁹uk+wk,absentsubscript𝐮𝑘subscriptđ‘„đ‘˜subscriptđ”đ‘˜subscript𝑱𝑘subscriptđ‘€đ‘˜\displaystyle=A_{k}x_{k}+B_{k}u_{k}+w_{k},= italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + italic_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + italic_w start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ,(1)
yksubscript𝑩𝑘\displaystyle y_{k}italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT=Ck⁹xk+vk,absentsubscriptđ¶đ‘˜subscriptđ‘„đ‘˜subscript𝑣𝑘\displaystyle=C_{k}x_{k}+v_{k},= italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ,(2)

where, for all k≄0𝑘0k\geq 0italic_k ≄ 0, xk∈ℝnsubscriptđ‘„đ‘˜superscriptℝ𝑛x_{k}\in{\mathbb{R}}^{n}italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT is the state, yk∈ℝpsubscript𝑩𝑘superscriptℝ𝑝y_{k}\in{\mathbb{R}}^{p}italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT is the measurement, uk∈ℝmsubscript𝑱𝑘superscriptℝ𝑚u_{k}\in{\mathbb{R}}^{m}italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT is the input, wkâˆŒđ’©âą(0,ÎŁk)similar-tosubscriptđ‘€đ‘˜đ’©0subscriptΣ𝑘w_{k}\sim\mathcal{N}(0,\Sigma_{k})italic_w start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∌ caligraphic_N ( 0 , roman_ÎŁ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) is the process noise, and vkâˆŒđ’©âą(0,Γk)similar-tosubscriptđ‘Łđ‘˜đ’©0subscriptΓ𝑘v_{k}\sim\mathcal{N}(0,\Gamma_{k})italic_v start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∌ caligraphic_N ( 0 , roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) is the measurement noise, for positive-semidefinite ÎŁk∈ℝn×nsubscriptΣ𝑘superscriptℝ𝑛𝑛\Sigma_{k}\in{\mathbb{R}}^{n\times n}roman_ÎŁ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_n × italic_n end_POSTSUPERSCRIPT and positive-semidefinite Γk∈ℝp×psubscriptΓ𝑘superscriptℝ𝑝𝑝\Gamma_{k}\in{\mathbb{R}}^{p\times p}roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_p × italic_p end_POSTSUPERSCRIPT.Moreover, for all k≄0𝑘0k\geq 0italic_k ≄ 0, Ak∈ℝn×nsubscript𝐮𝑘superscriptℝ𝑛𝑛A_{k}\in{\mathbb{R}}^{n\times n}italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_n × italic_n end_POSTSUPERSCRIPT, Bk∈ℝn×msubscriptđ”đ‘˜superscriptℝ𝑛𝑚B_{k}\in{\mathbb{R}}^{n\times m}italic_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_n × italic_m end_POSTSUPERSCRIPT, and Ck∈ℝp×nsubscriptđ¶đ‘˜superscriptℝ𝑝𝑛C_{k}\in{\mathbb{R}}^{p\times n}italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_p × italic_n end_POSTSUPERSCRIPT.The two-step Kalman filter [20] for the system given by (1) and (2) is can be expressed as

x^k+1|ksubscript^đ‘„đ‘˜conditional1𝑘\displaystyle\hat{x}_{k+1|k}over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_k + 1 | italic_k end_POSTSUBSCRIPT=Ak⁹x^k+Bk⁹uk,absentsubscript𝐮𝑘subscript^đ‘„đ‘˜subscriptđ”đ‘˜subscript𝑱𝑘\displaystyle=A_{k}\hat{x}_{k}+B_{k}u_{k},= italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + italic_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ,(3)
Pk+1|ksubscript𝑃𝑘conditional1𝑘\displaystyle P_{k+1|k}italic_P start_POSTSUBSCRIPT italic_k + 1 | italic_k end_POSTSUBSCRIPT=AkⁱPkⁱAkT+Σk,absentsubscript𝐮𝑘subscript𝑃𝑘superscriptsubscript𝐮𝑘TsubscriptΣ𝑘\displaystyle=A_{k}P_{k}A_{k}^{\rm T}+\Sigma_{k},= italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT + roman_Σ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ,(4)
KksubscriptđŸđ‘˜\displaystyle K_{k}italic_K start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT=Pk+1|k⁹CkT⁹(Ck⁹Pk+1|k⁹CkT+Γk)−1absentsubscript𝑃𝑘conditional1𝑘superscriptsubscriptđ¶đ‘˜Tsuperscriptsubscriptđ¶đ‘˜subscript𝑃𝑘conditional1𝑘superscriptsubscriptđ¶đ‘˜TsubscriptΓ𝑘1\displaystyle=P_{k+1|k}C_{k}^{\rm T}(C_{k}P_{k+1|k}C_{k}^{\rm T}+\Gamma_{k})^{%-1}= italic_P start_POSTSUBSCRIPT italic_k + 1 | italic_k end_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT ( italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT italic_k + 1 | italic_k end_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT + roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT(5)
x^k+1subscript^đ‘„đ‘˜1\displaystyle\hat{x}_{k+1}over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT=x^k+1|k+Kk⁹(yk−Ck⁹x^k+1|k),absentsubscript^đ‘„đ‘˜conditional1𝑘subscriptđŸđ‘˜subscript𝑩𝑘subscriptđ¶đ‘˜subscript^đ‘„đ‘˜conditional1𝑘\displaystyle=\hat{x}_{k+1|k}+K_{k}(y_{k}-C_{k}\hat{x}_{k+1|k}),= over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_k + 1 | italic_k end_POSTSUBSCRIPT + italic_K start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT - italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_k + 1 | italic_k end_POSTSUBSCRIPT ) ,(6)
Pk+1subscript𝑃𝑘1\displaystyle P_{k+1}italic_P start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT=Pk+1|k−Kk⁹Ck⁹Pk+1|k,absentsubscript𝑃𝑘conditional1𝑘subscriptđŸđ‘˜subscriptđ¶đ‘˜subscript𝑃𝑘conditional1𝑘\displaystyle=P_{k+1|k}-K_{k}C_{k}P_{k+1|k},= italic_P start_POSTSUBSCRIPT italic_k + 1 | italic_k end_POSTSUBSCRIPT - italic_K start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT italic_k + 1 | italic_k end_POSTSUBSCRIPT ,(7)

where, for all k≄0𝑘0k\geq 0italic_k ≄ 0, positive-definite Pk+1|k∈ℝn×nsubscript𝑃𝑘conditional1𝑘superscriptℝ𝑛𝑛P_{k+1|k}\in{\mathbb{R}}^{n\times n}italic_P start_POSTSUBSCRIPT italic_k + 1 | italic_k end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_n × italic_n end_POSTSUPERSCRIPT and Pk∈ℝn×nsubscript𝑃𝑘superscriptℝ𝑛𝑛P_{k}\in{\mathbb{R}}^{n\times n}italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_n × italic_n end_POSTSUPERSCRIPT are, respectively, the prior and posterior covariances, x^k+1|k∈ℝnsubscript^đ‘„đ‘˜conditional1𝑘superscriptℝ𝑛\hat{x}_{k+1|k}\in{\mathbb{R}}^{n}over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_k + 1 | italic_k end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT and x^k∈ℝnsubscript^đ‘„đ‘˜superscriptℝ𝑛\hat{x}_{k}\in{\mathbb{R}}^{n}over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT are, respectively, the prior and posterior state estimates, and Kk∈ℝn×psubscriptđŸđ‘˜superscriptℝ𝑛𝑝K_{k}\in{\mathbb{R}}^{n\times p}italic_K start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_n × italic_p end_POSTSUPERSCRIPT is the Kalman gain.

Next, if, for all k≄0𝑘0k\geq 0italic_k ≄ 0, ÎŁk+Ak⁹Pk⁹AkTsubscriptΣ𝑘subscript𝐮𝑘subscript𝑃𝑘superscriptsubscript𝐮𝑘T\Sigma_{k}+A_{k}P_{k}A_{k}^{\rm T}roman_ÎŁ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT and ΓksubscriptΓ𝑘\Gamma_{k}roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT are nonsingular, then the matrix inversion lemma (Lemma 1) can be used to rewrite (3) through (7) as the one-step Kalman filter [18], where, for all k≄0𝑘0k\geq 0italic_k ≄ 0,

Pk+1−1=superscriptsubscript𝑃𝑘11absent\displaystyle P_{k+1}^{-1}=italic_P start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT =(ÎŁk+Ak⁹Pk⁹AkT)−1+CkTⁱΓk−1⁹Ck,superscriptsubscriptΣ𝑘subscript𝐮𝑘subscript𝑃𝑘superscriptsubscript𝐮𝑘T1superscriptsubscriptđ¶đ‘˜TsuperscriptsubscriptΓ𝑘1subscriptđ¶đ‘˜\displaystyle(\Sigma_{k}+A_{k}P_{k}A_{k}^{\rm T})^{-1}+C_{k}^{\rm T}\Gamma_{k}%^{-1}C_{k},( roman_ÎŁ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT + italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ,(8)
x^k+1=subscript^đ‘„đ‘˜1absent\displaystyle\hat{x}_{k+1}=over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT =Ak⁹x^k+Bk⁹uksubscript𝐮𝑘subscript^đ‘„đ‘˜subscriptđ”đ‘˜subscript𝑱𝑘\displaystyle A_{k}\hat{x}_{k}+B_{k}u_{k}italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + italic_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT
+Pk+1⁹CkTⁱΓk−1⁹(yk−Ck⁹(Ak⁹x^k+Bk⁹uk)).subscript𝑃𝑘1superscriptsubscriptđ¶đ‘˜TsuperscriptsubscriptΓ𝑘1subscript𝑩𝑘subscriptđ¶đ‘˜subscript𝐮𝑘subscript^đ‘„đ‘˜subscriptđ”đ‘˜subscript𝑱𝑘\displaystyle+P_{k+1}C_{k}^{\rm T}\Gamma_{k}^{-1}\left(y_{k}-C_{k}(A_{k}\hat{x%}_{k}+B_{k}u_{k})\right).+ italic_P start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT - italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + italic_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ) .(9)

II-B Discrete-Time LTV State Transition Function

To facilitate expressing a least squares cost function for the Kalman filter, we first introduce the state transition function for discrete-time LTV system, a concise notation to transition between states at different time steps.For all k≄0𝑘0k\geq 0italic_k ≄ 0, let Ak∈ℝn×nsubscript𝐮𝑘superscriptℝ𝑛𝑛A_{k}\in{\mathbb{R}}^{n\times n}italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_n × italic_n end_POSTSUPERSCRIPT, Bk∈ℝn×msubscriptđ”đ‘˜superscriptℝ𝑛𝑚B_{k}\in{\mathbb{R}}^{n\times m}italic_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_n × italic_m end_POSTSUPERSCRIPT, xk∈ℝnsubscriptđ‘„đ‘˜superscriptℝ𝑛x_{k}\in{\mathbb{R}}^{n}italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT, and uk∈ℝmsubscript𝑱𝑘superscriptℝ𝑚u_{k}\in{\mathbb{R}}^{m}italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT. Consider the discrete-time, linear time-varying state update equation

xk+1=Ak⁹xk+Bk⁹uk.subscriptđ‘„đ‘˜1subscript𝐮𝑘subscriptđ‘„đ‘˜subscriptđ”đ‘˜subscript𝑱𝑘\displaystyle x_{k+1}=A_{k}x_{k}+B_{k}u_{k}.italic_x start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT = italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + italic_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT .(10)

Assume, for all k≄0𝑘0k\geq 0italic_k ≄ 0, Aksubscript𝐮𝑘A_{k}italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is nonsingular. For all i,k≄0𝑖𝑘0i,k\geq 0italic_i , italic_k ≄ 0, define the state transition matrix (from step i𝑖iitalic_i to step k𝑘kitalic_k), denoted Ίk,i∈ℝn×nsubscriptΩ𝑘𝑖superscriptℝ𝑛𝑛\Phi_{k,i}\in{\mathbb{R}}^{n\times n}roman_Ί start_POSTSUBSCRIPT italic_k , italic_i end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_n × italic_n end_POSTSUPERSCRIPT, by

Ίk,i≜{Ak−1⁹Ak−2ⁱ⋯ⁱAi+1⁹Aii<k,Ii=k,Ak−1⁹Ak+1−1ⁱ⋯ⁱAi−2−1⁹Ai−1−1k<i.≜subscriptΩ𝑘𝑖casessubscript𝐮𝑘1subscript𝐮𝑘2⋯subscript𝐮𝑖1subscriptđŽđ‘–đ‘–đ‘˜đŒđ‘–đ‘˜superscriptsubscript𝐮𝑘1superscriptsubscript𝐮𝑘11⋯superscriptsubscript𝐮𝑖21superscriptsubscript𝐮𝑖11𝑘𝑖\displaystyle\Phi_{k,i}\triangleq\begin{cases}A_{k-1}A_{k-2}\cdots A_{i+1}A_{i%}&i<k,\\I&i=k,\\A_{k}^{-1}A_{k+1}^{-1}\cdots A_{i-2}^{-1}A_{i-1}^{-1}&k<i.\end{cases}roman_Ί start_POSTSUBSCRIPT italic_k , italic_i end_POSTSUBSCRIPT ≜ { start_ROW start_CELL italic_A start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT italic_k - 2 end_POSTSUBSCRIPT ⋯ italic_A start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_CELL start_CELL italic_i < italic_k , end_CELL end_ROW start_ROW start_CELL italic_I end_CELL start_CELL italic_i = italic_k , end_CELL end_ROW start_ROW start_CELL italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_A start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ⋯ italic_A start_POSTSUBSCRIPT italic_i - 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_A start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_CELL start_CELL italic_k < italic_i . end_CELL end_ROW(11)

It follows that, for all i,k≄0𝑖𝑘0i,k\geq 0italic_i , italic_k ≄ 0, Ίi,k−1=Ίk,isuperscriptsubscriptΩ𝑖𝑘1subscriptΩ𝑘𝑖\Phi_{i,k}^{-1}=\Phi_{k,i}roman_Ί start_POSTSUBSCRIPT italic_i , italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = roman_Ί start_POSTSUBSCRIPT italic_k , italic_i end_POSTSUBSCRIPT.Then, for all 0≀i<k0𝑖𝑘0\leq i<k0 ≀ italic_i < italic_k, xksubscriptđ‘„đ‘˜x_{k}italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT can be expressed as

xksubscriptđ‘„đ‘˜\displaystyle x_{k}italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT=Ak−1⁹xk−1+Bk−1⁹uk−1,absentsubscript𝐮𝑘1subscriptđ‘„đ‘˜1subscriptđ”đ‘˜1subscript𝑱𝑘1\displaystyle=A_{k-1}x_{k-1}+B_{k-1}u_{k-1},= italic_A start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT + italic_B start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT ,
=Ak−1⁹Ak−2⁹xk−2+Ak−1⁹Bk−2⁹uk−2+Bk−1⁹uk−1,absentsubscript𝐮𝑘1subscript𝐮𝑘2subscriptđ‘„đ‘˜2subscript𝐮𝑘1subscriptđ”đ‘˜2subscript𝑱𝑘2subscriptđ”đ‘˜1subscript𝑱𝑘1\displaystyle=A_{k-1}A_{k-2}x_{k-2}+A_{k-1}B_{k-2}u_{k-2}+B_{k-1}u_{k-1},= italic_A start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT italic_k - 2 end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_k - 2 end_POSTSUBSCRIPT + italic_A start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT italic_B start_POSTSUBSCRIPT italic_k - 2 end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_k - 2 end_POSTSUBSCRIPT + italic_B start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT ,
=⋯=Ίk,i⁹xi+∑j=ik−1Ίk,j+1⁹Bj⁹uj.absent⋯subscriptΩ𝑘𝑖subscriptđ‘„đ‘–superscriptsubscript𝑗𝑖𝑘1subscriptΩ𝑘𝑗1subscriptđ”đ‘—subscript𝑱𝑗\displaystyle=\ \cdots\ =\Phi_{k,i}x_{i}+\sum_{j=i}^{k-1}\Phi_{k,j+1}B_{j}u_{j}.= ⋯ = roman_Ί start_POSTSUBSCRIPT italic_k , italic_i end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + ∑ start_POSTSUBSCRIPT italic_j = italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k - 1 end_POSTSUPERSCRIPT roman_Ί start_POSTSUBSCRIPT italic_k , italic_j + 1 end_POSTSUBSCRIPT italic_B start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT .(12)

For all 0≀i<k0𝑖𝑘0\leq i<k0 ≀ italic_i < italic_k, we further define the matrices

ℬk,isubscriptℬ𝑘𝑖\displaystyle\mathcal{B}_{k,i}caligraphic_B start_POSTSUBSCRIPT italic_k , italic_i end_POSTSUBSCRIPT≜[Ίk,i+1⁹Bi⋯Ωk,k−1⁹Bk−2Ίk,k⁹Bk−1],≜absentmatrixsubscriptΩ𝑘𝑖1subscriptđ”đ‘–â‹ŻsubscriptΩ𝑘𝑘1subscriptđ”đ‘˜2subscriptΩ𝑘𝑘subscriptđ”đ‘˜1\displaystyle\triangleq\begin{bmatrix}\Phi_{k,{i+1}}B_{i}&\cdots&\Phi_{k,{k-1}%}B_{k-2}&\Phi_{k,{k}}B_{k-1}\end{bmatrix},≜ [ start_ARG start_ROW start_CELL roman_Ί start_POSTSUBSCRIPT italic_k , italic_i + 1 end_POSTSUBSCRIPT italic_B start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_CELL start_CELL ⋯ end_CELL start_CELL roman_Ί start_POSTSUBSCRIPT italic_k , italic_k - 1 end_POSTSUBSCRIPT italic_B start_POSTSUBSCRIPT italic_k - 2 end_POSTSUBSCRIPT end_CELL start_CELL roman_Ί start_POSTSUBSCRIPT italic_k , italic_k end_POSTSUBSCRIPT italic_B start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ] ,(14)
𝒰k,isubscript𝒰𝑘𝑖\displaystyle\mathcal{U}_{k,i}caligraphic_U start_POSTSUBSCRIPT italic_k , italic_i end_POSTSUBSCRIPT≜[uiT⋯uk−2Tuk−1T]T.≜absentsuperscriptmatrixsuperscriptsubscript𝑱𝑖T⋯superscriptsubscript𝑱𝑘2Tsuperscriptsubscript𝑱𝑘1TT\displaystyle\triangleq\begin{bmatrix}u_{i}^{\rm T}&\cdots&u_{k-2}^{\rm T}&u_{%k-1}^{\rm T}\end{bmatrix}^{\rm T}.≜ [ start_ARG start_ROW start_CELL italic_u start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT end_CELL start_CELL ⋯ end_CELL start_CELL italic_u start_POSTSUBSCRIPT italic_k - 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT end_CELL start_CELL italic_u start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT end_CELL end_ROW end_ARG ] start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT .(16)

It follows that ℬk,iⁱ𝒰k,i=∑j=ik−1Ίk,j+1⁹Bj⁹ujsubscriptℬ𝑘𝑖subscript𝒰𝑘𝑖superscriptsubscript𝑗𝑖𝑘1subscriptΩ𝑘𝑗1subscriptđ”đ‘—subscript𝑱𝑗\mathcal{B}_{k,i}\mathcal{U}_{k,i}=\sum_{j=i}^{k-1}\Phi_{k,j+1}B_{j}u_{j}caligraphic_B start_POSTSUBSCRIPT italic_k , italic_i end_POSTSUBSCRIPT caligraphic_U start_POSTSUBSCRIPT italic_k , italic_i end_POSTSUBSCRIPT = ∑ start_POSTSUBSCRIPT italic_j = italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k - 1 end_POSTSUPERSCRIPT roman_Ί start_POSTSUBSCRIPT italic_k , italic_j + 1 end_POSTSUBSCRIPT italic_B start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT.Hence, for all 0≀i<k0𝑖𝑘0\leq i<k0 ≀ italic_i < italic_k, xk=Ίk,i⁹xi+ℬk,iⁱ𝒰k,isubscriptđ‘„đ‘˜subscriptΩ𝑘𝑖subscriptđ‘„đ‘–subscriptℬ𝑘𝑖subscript𝒰𝑘𝑖x_{k}=\Phi_{k,i}x_{i}+\mathcal{B}_{k,i}\mathcal{U}_{k,i}italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = roman_Ί start_POSTSUBSCRIPT italic_k , italic_i end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + caligraphic_B start_POSTSUBSCRIPT italic_k , italic_i end_POSTSUBSCRIPT caligraphic_U start_POSTSUBSCRIPT italic_k , italic_i end_POSTSUBSCRIPT.On the other hand, for all 0≀k<i0𝑘𝑖0\leq k<i0 ≀ italic_k < italic_i, xk=Ίk,i⁹(xi−ℬi,kⁱ𝒰i,k)subscriptđ‘„đ‘˜subscriptΩ𝑘𝑖subscriptđ‘„đ‘–subscriptℬ𝑖𝑘subscript𝒰𝑖𝑘x_{k}=\Phi_{k,i}(x_{i}-\mathcal{B}_{i,k}\mathcal{U}_{i,k})italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = roman_Ί start_POSTSUBSCRIPT italic_k , italic_i end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - caligraphic_B start_POSTSUBSCRIPT italic_i , italic_k end_POSTSUBSCRIPT caligraphic_U start_POSTSUBSCRIPT italic_i , italic_k end_POSTSUBSCRIPT ).Therefore, for all i≄0𝑖0i\geq 0italic_i ≄ 0 and k≄0𝑘0k\geq 0italic_k ≄ 0, we define the state transition function (from step i𝑖iitalic_i to step k𝑘kitalic_k), denoted 𝒯k,i:ℝn→ℝn:subscript𝒯𝑘𝑖→superscriptℝ𝑛superscriptℝ𝑛\mathcal{T}_{k,i}:{\mathbb{R}}^{n}\rightarrow{\mathbb{R}}^{n}caligraphic_T start_POSTSUBSCRIPT italic_k , italic_i end_POSTSUBSCRIPT : blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT → blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT, by

𝒯k,i⁹(x)≜{Ίk,i⁹x+ℬk,iⁱ𝒰k,ii<k,xi=k,Ίk,i⁹(x−ℬi,kⁱ𝒰i,k)k<i.≜subscriptđ’Żđ‘˜đ‘–đ‘„casessubscriptÎŠđ‘˜đ‘–đ‘„subscriptℬ𝑘𝑖subscriptđ’°đ‘˜đ‘–đ‘–đ‘˜đ‘„đ‘–đ‘˜subscriptÎŠđ‘˜đ‘–đ‘„subscriptℬ𝑖𝑘subscript𝒰𝑖𝑘𝑘𝑖\displaystyle\mathcal{T}_{k,i}(x)\triangleq\begin{cases}\Phi_{k,i}x+\mathcal{B%}_{k,i}\mathcal{U}_{k,i}&i<k,\\x&i=k,\\\Phi_{k,i}(x-\mathcal{B}_{i,k}\mathcal{U}_{i,k})&k<i.\end{cases}caligraphic_T start_POSTSUBSCRIPT italic_k , italic_i end_POSTSUBSCRIPT ( italic_x ) ≜ { start_ROW start_CELL roman_Ί start_POSTSUBSCRIPT italic_k , italic_i end_POSTSUBSCRIPT italic_x + caligraphic_B start_POSTSUBSCRIPT italic_k , italic_i end_POSTSUBSCRIPT caligraphic_U start_POSTSUBSCRIPT italic_k , italic_i end_POSTSUBSCRIPT end_CELL start_CELL italic_i < italic_k , end_CELL end_ROW start_ROW start_CELL italic_x end_CELL start_CELL italic_i = italic_k , end_CELL end_ROW start_ROW start_CELL roman_Ί start_POSTSUBSCRIPT italic_k , italic_i end_POSTSUBSCRIPT ( italic_x - caligraphic_B start_POSTSUBSCRIPT italic_i , italic_k end_POSTSUBSCRIPT caligraphic_U start_POSTSUBSCRIPT italic_i , italic_k end_POSTSUBSCRIPT ) end_CELL start_CELL italic_k < italic_i . end_CELL end_ROW(17)

III A Least Squares Cost Function which Derives the Kalman Filter

This section develops the Kalman filter least squares (KFLS) cost function whose recursive minimizer gives the one-step Kalman filter update equations.To begin, for all k≄0𝑘0k\geq 0italic_k ≄ 0, let Fk∈ℝn×nsubscriptđč𝑘superscriptℝ𝑛𝑛F_{k}\in{\mathbb{R}}^{n\times n}italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_n × italic_n end_POSTSUPERSCRIPT be the forgetting matrix.Theorem 1 develops the KFLS cost function (19) in terms of Fksubscriptđč𝑘F_{k}italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT and shows how the update equations (23) and (24) minimize that cost.Corollary 2 will later show how, for a particular choice of Fksubscriptđč𝑘F_{k}italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT, the update equations of Theorem 1 are equivalent to the one-step Kalman filter.

Theorem 1.

For all k≄0𝑘0k\geq 0italic_k ≄ 0, let Ak∈ℝn×nsubscript𝐮𝑘superscriptℝ𝑛𝑛A_{k}\in{\mathbb{R}}^{n\times n}italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_n × italic_n end_POSTSUPERSCRIPT be nonsingular, Bk∈ℝn×msubscriptđ”đ‘˜superscriptℝ𝑛𝑚B_{k}\in{\mathbb{R}}^{n\times m}italic_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_n × italic_m end_POSTSUPERSCRIPT, Ck∈ℝp×nsubscriptđ¶đ‘˜superscriptℝ𝑝𝑛C_{k}\in{\mathbb{R}}^{p\times n}italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_p × italic_n end_POSTSUPERSCRIPT, Γk∈ℝp×psubscriptnormal-Γ𝑘superscriptℝ𝑝𝑝\Gamma_{k}\in{\mathbb{R}}^{p\times p}roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_p × italic_p end_POSTSUPERSCRIPT be positive definite, uk∈ℝmsubscript𝑱𝑘superscriptℝ𝑚u_{k}\in{\mathbb{R}}^{m}italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT, and yk∈ℝpsubscript𝑩𝑘superscriptℝ𝑝y_{k}\in{\mathbb{R}}^{p}italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT. Furthermore, let P0∈ℝn×nsubscript𝑃0superscriptℝ𝑛𝑛P_{0}\in{\mathbb{R}}^{n\times n}italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_n × italic_n end_POSTSUPERSCRIPT be positive definite and x^0∈ℝnsubscriptnormal-^đ‘„0superscriptℝ𝑛\hat{x}_{0}\in{\mathbb{R}}^{n}over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. For all k≄0𝑘0k\geq 0italic_k ≄ 0, Let Fk∈ℝn×nsubscriptđč𝑘superscriptℝ𝑛𝑛F_{k}\in{\mathbb{R}}^{n\times n}italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_n × italic_n end_POSTSUPERSCRIPT be positive semidefinite and such that

Fksubscriptđč𝑘\displaystyle F_{k}italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPTâ‰șΊ0,kT⁹P0−1⁹Ί0,kprecedesabsentsuperscriptsubscriptΊ0𝑘Tsuperscriptsubscript𝑃01subscriptΊ0𝑘\displaystyle\prec\Phi_{0,k}^{\rm T}P_{0}^{-1}\Phi_{0,k}â‰ș roman_Ί start_POSTSUBSCRIPT 0 , italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT roman_Ί start_POSTSUBSCRIPT 0 , italic_k end_POSTSUBSCRIPT
+∑i=0k−1(Ίi+1,kT⁹CiTⁱΓi−1⁹Ci⁹Ίi+1,k−Ωi,kT⁹Fi⁹Ίi,k).superscriptsubscript𝑖0𝑘1superscriptsubscriptΩ𝑖1𝑘Tsuperscriptsubscriptđ¶đ‘–TsuperscriptsubscriptΓ𝑖1subscriptđ¶đ‘–subscriptΩ𝑖1𝑘superscriptsubscriptΩ𝑖𝑘Tsubscriptđč𝑖subscriptΩ𝑖𝑘\displaystyle+\sum_{i=0}^{k-1}\left(\Phi_{i+1,k}^{\rm T}C_{i}^{\rm T}\Gamma_{i%}^{-1}C_{i}\Phi_{i+1,k}-\Phi_{i,k}^{\rm T}F_{i}\Phi_{i,k}\right).+ ∑ start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k - 1 end_POSTSUPERSCRIPT ( roman_Ί start_POSTSUBSCRIPT italic_i + 1 , italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT roman_Ί start_POSTSUBSCRIPT italic_i + 1 , italic_k end_POSTSUBSCRIPT - roman_Ί start_POSTSUBSCRIPT italic_i , italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT italic_F start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT roman_Ί start_POSTSUBSCRIPT italic_i , italic_k end_POSTSUBSCRIPT ) .(18)

For all k≄0𝑘0k\geq 0italic_k ≄ 0, define Jk:ℝn→ℝnormal-:subscriptđœđ‘˜normal-→superscriptℝ𝑛ℝJ_{k}\colon{\mathbb{R}}^{n}\rightarrow{\mathbb{R}}italic_J start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT : blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT → blackboard_R as

Jk⁹(x^)≜Jk,loss⁹(x^)−Jk,forget⁹(x^)+Jk,reg⁹(x^),≜subscriptđœđ‘˜^đ‘„subscriptđœđ‘˜loss^đ‘„subscriptđœđ‘˜forget^đ‘„subscriptđœđ‘˜reg^đ‘„\displaystyle J_{k}(\hat{x})\triangleq J_{k,{\rm loss}}(\hat{x})-J_{k,{\rmforget%}}(\hat{x})+J_{k,{\rm reg}}(\hat{x}),italic_J start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG ) ≜ italic_J start_POSTSUBSCRIPT italic_k , roman_loss end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG ) - italic_J start_POSTSUBSCRIPT italic_k , roman_forget end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG ) + italic_J start_POSTSUBSCRIPT italic_k , roman_reg end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG ) ,(19)

where

Jk,loss⁹(x^)subscriptđœđ‘˜loss^đ‘„\displaystyle J_{k,{\rm loss}}(\hat{x})italic_J start_POSTSUBSCRIPT italic_k , roman_loss end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG )≜∑i=0k‖yi−Ciⁱ𝒯i+1,k+1⁹(x^)‖Γi−12≜absentsuperscriptsubscript𝑖0𝑘superscriptsubscriptnormsubscript𝑩𝑖subscriptđ¶đ‘–subscript𝒯𝑖1𝑘1^đ‘„superscriptsubscriptΓ𝑖12\displaystyle\triangleq\sum_{i=0}^{k}\|y_{i}-C_{i}\mathcal{T}_{i+1,k+1}(\hat{x%})\|_{\Gamma_{i}^{-1}}^{2}≜ ∑ start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ∄ italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - italic_C start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT caligraphic_T start_POSTSUBSCRIPT italic_i + 1 , italic_k + 1 end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG ) ∄ start_POSTSUBSCRIPT roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT(20)
Jk,forget⁹(x^)subscriptđœđ‘˜forget^đ‘„\displaystyle J_{k,{\rm forget}}(\hat{x})italic_J start_POSTSUBSCRIPT italic_k , roman_forget end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG )≜∑i=0k‖𝒯i,k+1⁹(x^)−x^i‖Fi2,≜absentsuperscriptsubscript𝑖0𝑘superscriptsubscriptnormsubscript𝒯𝑖𝑘1^đ‘„subscript^đ‘„đ‘–subscriptđč𝑖2\displaystyle\triangleq\sum_{i=0}^{k}\|\mathcal{T}_{i,k+1}(\hat{x})-\hat{x}_{i%}\|_{F_{i}}^{2},≜ ∑ start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ∄ caligraphic_T start_POSTSUBSCRIPT italic_i , italic_k + 1 end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG ) - over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∄ start_POSTSUBSCRIPT italic_F start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ,(21)
Jk,reg⁹(x^)subscriptđœđ‘˜reg^đ‘„\displaystyle J_{k,{\rm reg}}(\hat{x})italic_J start_POSTSUBSCRIPT italic_k , roman_reg end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG )≜‖𝒯0,k+1⁹(x^)−x^0‖P0−12.≜absentsuperscriptsubscriptnormsubscript𝒯0𝑘1^đ‘„subscript^đ‘„0superscriptsubscript𝑃012\displaystyle\triangleq\|\mathcal{T}_{0,k+1}(\hat{x})-\hat{x}_{0}\|_{P_{0}^{-1%}}^{2}.≜ ∄ caligraphic_T start_POSTSUBSCRIPT 0 , italic_k + 1 end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG ) - over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∄ start_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT .(22)

Then, there exists a unique global minimizer of Jk⁹(x^)subscriptđœđ‘˜normal-^đ‘„J_{k}(\hat{x})italic_J start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG ), denoted x^k+1≜arg⁹minx^∈ℝn⁥Jk⁹(x^)normal-≜subscriptnormal-^đ‘„đ‘˜1subscriptnormal-argnormal-minnormal-^đ‘„superscriptℝ𝑛subscriptđœđ‘˜normal-^đ‘„\hat{x}_{k+1}\triangleq\operatorname*{arg\,min}_{\hat{x}\in{\mathbb{R}}^{n}}J_%{k}(\hat{x})over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT ≜ start_OPERATOR roman_arg roman_min end_OPERATOR start_POSTSUBSCRIPT over^ start_ARG italic_x end_ARG ∈ blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_POSTSUBSCRIPT italic_J start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG ),which, for all k≄0𝑘0k\geq 0italic_k ≄ 0, is given recursively by

Pk+1−1=superscriptsubscript𝑃𝑘11absent\displaystyle P_{k+1}^{-1}=italic_P start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT =Ak−T⁹(Pk−1−Fk)⁹Ak−1+CkTⁱΓk−1⁹Ck,superscriptsubscript𝐮𝑘Tsuperscriptsubscript𝑃𝑘1subscriptđč𝑘superscriptsubscript𝐮𝑘1superscriptsubscriptđ¶đ‘˜TsuperscriptsubscriptΓ𝑘1subscriptđ¶đ‘˜\displaystyle A_{k}^{-{\rm T}}(P_{k}^{-1}-F_{k})A_{k}^{-1}+C_{k}^{\rm T}\Gamma%_{k}^{-1}C_{k},italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - roman_T end_POSTSUPERSCRIPT ( italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT + italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ,(23)
x^k+1=subscript^đ‘„đ‘˜1absent\displaystyle\hat{x}_{k+1}=over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT =Ak⁹x^k+Bk⁹uksubscript𝐮𝑘subscript^đ‘„đ‘˜subscriptđ”đ‘˜subscript𝑱𝑘\displaystyle A_{k}\hat{x}_{k}+B_{k}u_{k}italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + italic_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT
+Pk+1⁹CkTⁱΓk−1⁹(yk−Ck⁹(Ak⁹x^k+Bk⁹uk)),subscript𝑃𝑘1superscriptsubscriptđ¶đ‘˜TsuperscriptsubscriptΓ𝑘1subscript𝑩𝑘subscriptđ¶đ‘˜subscript𝐮𝑘subscript^đ‘„đ‘˜subscriptđ”đ‘˜subscript𝑱𝑘\displaystyle+P_{k+1}C_{k}^{\rm T}\Gamma_{k}^{-1}\left(y_{k}-C_{k}(A_{k}\hat{x%}_{k}+B_{k}u_{k})\right),+ italic_P start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT - italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + italic_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ) ,(24)

where, for all k≄0𝑘0k\geq 0italic_k ≄ 0, Pk∈ℝn×nsubscript𝑃𝑘superscriptℝ𝑛𝑛P_{k}\in{\mathbb{R}}^{n\times n}italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_n × italic_n end_POSTSUPERSCRIPT is positive definite.

Proof.

See the Appendix.∎

Corollary 1.

Consider the notation and assumptions of Theorem 1.For all k≄0𝑘0k\geq 0italic_k ≄ 0,

Pk−1superscriptsubscript𝑃𝑘1\displaystyle P_{k}^{-1}italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT=Ω0,kTⁱP0−1ⁱΩ0,kabsentsuperscriptsubscriptΩ0𝑘Tsuperscriptsubscript𝑃01subscriptΩ0𝑘\displaystyle=\Phi_{0,k}^{\rm T}P_{0}^{-1}\Phi_{0,k}= roman_Ω start_POSTSUBSCRIPT 0 , italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT roman_Ω start_POSTSUBSCRIPT 0 , italic_k end_POSTSUBSCRIPT
+∑i=0k−1(Ίi+1,kT⁹CiTⁱΓi−1⁹Ci⁹Ίi+1,k−Ωi,kT⁹Fi⁹Ίi,k),superscriptsubscript𝑖0𝑘1superscriptsubscriptΩ𝑖1𝑘Tsuperscriptsubscriptđ¶đ‘–TsuperscriptsubscriptΓ𝑖1subscriptđ¶đ‘–subscriptΩ𝑖1𝑘superscriptsubscriptΩ𝑖𝑘Tsubscriptđč𝑖subscriptΩ𝑖𝑘\displaystyle+\sum_{i=0}^{k-1}\left(\Phi_{i+1,k}^{\rm T}C_{i}^{\rm T}\Gamma_{i%}^{-1}C_{i}\Phi_{i+1,k}-\Phi_{i,k}^{\rm T}F_{i}\Phi_{i,k}\right),+ ∑ start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k - 1 end_POSTSUPERSCRIPT ( roman_Ί start_POSTSUBSCRIPT italic_i + 1 , italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT roman_Ί start_POSTSUBSCRIPT italic_i + 1 , italic_k end_POSTSUBSCRIPT - roman_Ί start_POSTSUBSCRIPT italic_i , italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT italic_F start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT roman_Ί start_POSTSUBSCRIPT italic_i , italic_k end_POSTSUBSCRIPT ) ,(25)

and hence (18) hold if and only if Pk−1−Fk≻0succeedssuperscriptsubscript𝑃𝑘1subscriptđč𝑘0P_{k}^{-1}-F_{k}\succ 0italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ≻ 0.

Proof.

Let k≄0𝑘0k\geq 0italic_k ≄ 0. Note that (25) follows from repeated substitution of (23).Next, note that the right-hand side of (25) is equivalent to the right-hand side of (18).Hence, (18) is equivalent to Pk−1−Fk≻0succeedssuperscriptsubscript𝑃𝑘1subscriptđč𝑘0P_{k}^{-1}-F_{k}\succ 0italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ≻ 0∎

Corollary 2.

Consider the notation and assumptions of Theorem 1.If, for all k≄0𝑘0k\geq 0italic_k ≄ 0, there exists positive-semidefinite ÎŁk∈ℝn×nsubscriptnormal-Σ𝑘superscriptℝ𝑛𝑛\Sigma_{k}\in{\mathbb{R}}^{n\times n}roman_ÎŁ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_n × italic_n end_POSTSUPERSCRIPT such that

Fk=Pk−1−(Ak−1⁹Σk⁹Ak−T+Pk)−1,subscriptđč𝑘superscriptsubscript𝑃𝑘1superscriptsuperscriptsubscript𝐮𝑘1subscriptΣ𝑘superscriptsubscript𝐮𝑘Tsubscript𝑃𝑘1\displaystyle F_{k}=P_{k}^{-1}-(A_{k}^{-1}\Sigma_{k}A_{k}^{-{\rm T}}+P_{k})^{-%1},italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - ( italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT roman_ÎŁ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - roman_T end_POSTSUPERSCRIPT + italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ,(26)

then, for all k≄0𝑘0k\geq 0italic_k ≄ 0, (18) is satisfied. Moreover, (23) and (24) are equivalent to the one-step Kalman filter update equations (8) and (9).

Proof.

Let k≄0𝑘0k\geq 0italic_k ≄ 0. Note that (26) can be rewritten as

(ÎŁk+Ak⁹Pk⁹AkT)−1=Ak−T⁹(Pk−1−Fk)⁹Ak−1.superscriptsubscriptΣ𝑘subscript𝐮𝑘subscript𝑃𝑘superscriptsubscript𝐮𝑘T1superscriptsubscript𝐮𝑘Tsuperscriptsubscript𝑃𝑘1subscriptđč𝑘superscriptsubscript𝐮𝑘1\displaystyle(\Sigma_{k}+A_{k}P_{k}A_{k}^{\rm T})^{-1}=A_{k}^{-{\rm T}}(P_{k}^%{-1}-F_{k})A_{k}^{-1}.( roman_ÎŁ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - roman_T end_POSTSUPERSCRIPT ( italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT .(27)

Substituting (27) into (23), it follows that (23) and (24) are equivalent to (8) and (9).Moreover, (26) can also be expressed as Pk−1−Fk=(Ak−1⁹Σk⁹Ak−T+Pk)−1superscriptsubscript𝑃𝑘1subscriptđč𝑘superscriptsuperscriptsubscript𝐮𝑘1subscriptΣ𝑘superscriptsubscript𝐮𝑘Tsubscript𝑃𝑘1P_{k}^{-1}-F_{k}=(A_{k}^{-1}\Sigma_{k}A_{k}^{-{\rm T}}+P_{k})^{-1}italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = ( italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT roman_ÎŁ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - roman_T end_POSTSUPERSCRIPT + italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT.Since ÎŁksubscriptΣ𝑘\Sigma_{k}roman_ÎŁ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT and Pksubscript𝑃𝑘P_{k}italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT are both positive definite, it follows that Ak−1⁹Σk⁹Ak−T+Pksuperscriptsubscript𝐮𝑘1subscriptΣ𝑘superscriptsubscript𝐮𝑘Tsubscript𝑃𝑘A_{k}^{-1}\Sigma_{k}A_{k}^{-{\rm T}}+P_{k}italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT roman_ÎŁ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - roman_T end_POSTSUPERSCRIPT + italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is positive definite, and hence Pk−1−Fksuperscriptsubscript𝑃𝑘1subscriptđč𝑘P_{k}^{-1}-F_{k}italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is positive definite.Therefore, by Corollary 1, condition (18) is satisfied.∎

Next, Proposition 1 shows that, for all k≄0𝑘0k\geq 0italic_k ≄ 0, ÎŁksubscriptΣ𝑘\Sigma_{k}roman_ÎŁ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT has the same definiteness as Fksubscriptđč𝑘F_{k}italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT.

Proposition 1.

For all k≄0𝑘0k\geq 0italic_k ≄ 0, ÎŁksubscriptnormal-Σ𝑘\Sigma_{k}roman_ÎŁ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is positive semidefinite (resp. positive definite) if and only on Fksubscriptđč𝑘F_{k}italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is positive semidefinite (resp. positive definite).

Proof.

Let k≄0𝑘0k\geq 0italic_k ≄ 0.If Fksubscriptđč𝑘F_{k}italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is positive semidefinite (respectively, positive definite), then Pk−1−FkâȘŻPk−1precedes-or-equalssuperscriptsubscript𝑃𝑘1subscriptđč𝑘superscriptsubscript𝑃𝑘1P_{k}^{-1}-F_{k}\preceq P_{k}^{-1}italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT âȘŻ italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT (respectively, Pk−1−Fkâ‰șPk−1precedessuperscriptsubscript𝑃𝑘1subscriptđč𝑘superscriptsubscript𝑃𝑘1P_{k}^{-1}-F_{k}\prec P_{k}^{-1}italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT â‰ș italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT).Since Pk−1−Fksuperscriptsubscript𝑃𝑘1subscriptđč𝑘P_{k}^{-1}-F_{k}italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is nonsingular by Corollary 1, it follows that (Pk−1−Fk)−1âȘ°Pksucceeds-or-equalssuperscriptsuperscriptsubscript𝑃𝑘1subscriptđč𝑘1subscript𝑃𝑘(P_{k}^{-1}-F_{k})^{-1}\succeq P_{k}( italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT âȘ° italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT and hence (Pk−1−Fk)−1−PkâȘ°0succeeds-or-equalssuperscriptsuperscriptsubscript𝑃𝑘1subscriptđč𝑘1subscript𝑃𝑘0(P_{k}^{-1}-F_{k})^{-1}-P_{k}\succeq 0( italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT âȘ° 0 (respectively, (Pk−1−Fk)−1−Pk≻0succeedssuperscriptsuperscriptsubscript𝑃𝑘1subscriptđč𝑘1subscript𝑃𝑘0(P_{k}^{-1}-F_{k})^{-1}-P_{k}\succ 0( italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ≻ 0).Finally, since Aksubscript𝐮𝑘A_{k}italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is nonsingular by assumption, it follows from (31) that ÎŁksubscriptΣ𝑘\Sigma_{k}roman_ÎŁ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is positive semidefinite (respectively, positive definite).

Next, if ÎŁksubscriptΣ𝑘\Sigma_{k}roman_ÎŁ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is positive semidefinite (respectively, positive definite), then ÎŁk+PkâȘ°Pksucceeds-or-equalssubscriptΣ𝑘subscript𝑃𝑘subscript𝑃𝑘\Sigma_{k}+P_{k}\succeq P_{k}roman_ÎŁ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT âȘ° italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT (respectively, ÎŁk+Pk≻PksucceedssubscriptΣ𝑘subscript𝑃𝑘subscript𝑃𝑘\Sigma_{k}+P_{k}\succ P_{k}roman_ÎŁ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ≻ italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT) and hence (ÎŁk+Pk)−1âȘŻPk−1precedes-or-equalssuperscriptsubscriptΣ𝑘subscript𝑃𝑘1superscriptsubscript𝑃𝑘1(\Sigma_{k}+P_{k})^{-1}\preceq P_{k}^{-1}( roman_ÎŁ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT âȘŻ italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT (respectively, (ÎŁk+Pk)−1â‰șPk−1precedessuperscriptsubscriptΣ𝑘subscript𝑃𝑘1superscriptsubscript𝑃𝑘1(\Sigma_{k}+P_{k})^{-1}\prec P_{k}^{-1}( roman_ÎŁ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT â‰ș italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT).Therefore, Fk=Pk−1−(ÎŁk+Pk)−1âȘ°0subscriptđč𝑘superscriptsubscript𝑃𝑘1superscriptsubscriptΣ𝑘subscript𝑃𝑘1succeeds-or-equals0F_{k}=P_{k}^{-1}-(\Sigma_{k}+P_{k})^{-1}\succeq 0italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - ( roman_ÎŁ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT âȘ° 0 (respectively, Fk=Pk−1−(ÎŁk+Pk)−1≻0subscriptđč𝑘superscriptsubscript𝑃𝑘1superscriptsubscriptΣ𝑘subscript𝑃𝑘1succeeds0F_{k}=P_{k}^{-1}-(\Sigma_{k}+P_{k})^{-1}\succ 0italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - ( roman_ÎŁ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ≻ 0).∎

IV RLS Extensions as Special Cases of the Kalman Filter

Revisiting the state update equation (10), note that if, for all k≄0𝑘0k\geq 0italic_k ≄ 0, Ak=Insubscript𝐮𝑘subscriptđŒđ‘›A_{k}=I_{n}italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = italic_I start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT and Bk=0n×msubscriptđ”đ‘˜subscript0𝑛𝑚B_{k}=0_{n\times m}italic_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = 0 start_POSTSUBSCRIPT italic_n × italic_m end_POSTSUBSCRIPT, then, for all k≄0𝑘0k\geq 0italic_k ≄ 0, xk+1=xksubscriptđ‘„đ‘˜1subscriptđ‘„đ‘˜x_{k+1}=x_{k}italic_x start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT = italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT.This also implies that the state transition function, given by (17), is identity.In particular, for all i≄0𝑖0i\geq 0italic_i ≄ 0, k≄0𝑘0k\geq 0italic_k ≄ 0, and x∈ℝnđ‘„superscriptℝ𝑛x\in{\mathbb{R}}^{n}italic_x ∈ blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT, 𝒯k,i⁹(x)=xsubscriptđ’Żđ‘˜đ‘–đ‘„đ‘„\mathcal{T}_{k,i}(x)=xcaligraphic_T start_POSTSUBSCRIPT italic_k , italic_i end_POSTSUBSCRIPT ( italic_x ) = italic_x.Substituting the identity state transition function into the cost function Jksubscriptđœđ‘˜J_{k}italic_J start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT given by (19), it follows that, for all k≄0𝑘0k\geq 0italic_k ≄ 0,

Jk,loss⁹(x^)subscriptđœđ‘˜loss^đ‘„\displaystyle J_{k,{\rm loss}}(\hat{x})italic_J start_POSTSUBSCRIPT italic_k , roman_loss end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG )=∑i=0k‖yi−Ci⁹x^‖Γi−12absentsuperscriptsubscript𝑖0𝑘superscriptsubscriptnormsubscript𝑩𝑖subscriptđ¶đ‘–^đ‘„superscriptsubscriptΓ𝑖12\displaystyle=\sum_{i=0}^{k}\|y_{i}-C_{i}\hat{x}\|_{\Gamma_{i}^{-1}}^{2}= ∑ start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ∄ italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - italic_C start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT over^ start_ARG italic_x end_ARG ∄ start_POSTSUBSCRIPT roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT(28)
Jk,forget⁹(x^)subscriptđœđ‘˜forget^đ‘„\displaystyle J_{k,{\rm forget}}(\hat{x})italic_J start_POSTSUBSCRIPT italic_k , roman_forget end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG )=∑i=0k‖x^−x^i‖Fi2,absentsuperscriptsubscript𝑖0𝑘superscriptsubscriptnorm^đ‘„subscript^đ‘„đ‘–subscriptđč𝑖2\displaystyle=\sum_{i=0}^{k}\|\hat{x}-\hat{x}_{i}\|_{F_{i}}^{2},= ∑ start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ∄ over^ start_ARG italic_x end_ARG - over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∄ start_POSTSUBSCRIPT italic_F start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ,(29)
Jk,reg⁹(x^)subscriptđœđ‘˜reg^đ‘„\displaystyle J_{k,{\rm reg}}(\hat{x})italic_J start_POSTSUBSCRIPT italic_k , roman_reg end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG )=‖x^−x^0‖P0−12.absentsuperscriptsubscriptnorm^đ‘„subscript^đ‘„0superscriptsubscript𝑃012\displaystyle=\|\hat{x}-\hat{x}_{0}\|_{P_{0}^{-1}}^{2}.= ∄ over^ start_ARG italic_x end_ARG - over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∄ start_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT .(30)

Note that, in this special case, the cost function Jksubscriptđœđ‘˜J_{k}italic_J start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is equivalent to the generalized forgetting recursive least squares (GF-RLS) cost developed in [19], where GF-RLS uses the notation ξ∈ℝn𝜃superscriptℝ𝑛\theta\in{\mathbb{R}}^{n}italic_Ξ ∈ blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT and ϕk∈ℝp×nsubscriptitalic-Ï•đ‘˜superscriptℝ𝑝𝑛\phi_{k}\in{\mathbb{R}}^{p\times n}italic_ϕ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_p × italic_n end_POSTSUPERSCRIPT instead of x^∈ℝn^đ‘„superscriptℝ𝑛\hat{x}\in{\mathbb{R}}^{n}over^ start_ARG italic_x end_ARG ∈ blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT and Ck∈ℝp×nsubscriptđ¶đ‘˜superscriptℝ𝑝𝑛C_{k}\in{\mathbb{R}}^{p\times n}italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_p × italic_n end_POSTSUPERSCRIPT, respectively.In [19], it was shown that various extensions of RLS from the literature are special cases of GF-RLS if, for all k≄0𝑘0k\geq 0italic_k ≄ 0, a particular forgetting matrix Fk∈ℝn×nsubscriptđč𝑘superscriptℝ𝑛𝑛F_{k}\in{\mathbb{R}}^{n\times n}italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_n × italic_n end_POSTSUPERSCRIPT is chosen.

Therefore, we conclude that an extension of RLS, which is a special case of GF-RLS with forgetting matrix Fksubscriptđč𝑘F_{k}italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT, k≄0𝑘0k\geq 0italic_k ≄ 0, is also a special case of the Kalman filter if, for all k≄0𝑘0k\geq 0italic_k ≄ 0, Ak=Insubscript𝐮𝑘subscriptđŒđ‘›A_{k}=I_{n}italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = italic_I start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Bk=0n×msubscriptđ”đ‘˜subscript0𝑛𝑚B_{k}=0_{n\times m}italic_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = 0 start_POSTSUBSCRIPT italic_n × italic_m end_POSTSUBSCRIPT, and there exists positive-semidefinite ÎŁk∈ℝn×nsubscriptΣ𝑘superscriptℝ𝑛𝑛\Sigma_{k}\in{\mathbb{R}}^{n\times n}roman_ÎŁ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_n × italic_n end_POSTSUPERSCRIPT such that (26) holds.Explicitly solving for ÎŁksubscriptΣ𝑘\Sigma_{k}roman_ÎŁ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT, it follows that

ÎŁk=Ak⁹[(Pk−1−Fk)−1−Pk]⁹AkT,subscriptΣ𝑘subscript𝐮𝑘delimited-[]superscriptsuperscriptsubscript𝑃𝑘1subscriptđč𝑘1subscript𝑃𝑘superscriptsubscript𝐮𝑘T\displaystyle\Sigma_{k}=A_{k}\left[(P_{k}^{-1}-F_{k})^{-1}-P_{k}\right]A_{k}^{%\rm T},roman_ÎŁ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT [ ( italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ] italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT ,(31)

where Pk−1−Fksuperscriptsubscript𝑃𝑘1subscriptđč𝑘P_{k}^{-1}-F_{k}italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is nonsingular by (18) and Corollary 1.Moreover, by Proposition 1, ÎŁksubscriptΣ𝑘\Sigma_{k}roman_ÎŁ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is positive semidefinite if and only if Fksubscriptđč𝑘F_{k}italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is positive semidefinite.

While [19] gives a thorough literature review on extensions of RLS as special cases of GF-RLS, for brevitiy, we summarize eight extensions in Table I.Given are the algorithm name and reference, assumptions of the algorithm, tuning parameters, and Σk∈ℝn×nsubscriptΣ𝑘superscriptℝ𝑛𝑛\Sigma_{k}\in{\mathbb{R}}^{n\times n}roman_Σ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_n × italic_n end_POSTSUPERSCRIPT derived from (31).

AlgorithmTuning ParametersProcess Noise Covariance ΣksubscriptΣ𝑘\Sigma_{k}roman_Σ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT
1. Recursive Least Squares [2]—Σk=0n×nsubscriptΣ𝑘subscript0𝑛𝑛\Sigma_{k}=0_{n\times n}roman_Σ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = 0 start_POSTSUBSCRIPT italic_n × italic_n end_POSTSUBSCRIPT
2. Exponential Forgetting [2, 21]λ∈(0,1]𝜆01\lambda\in(0,1]italic_λ ∈ ( 0 , 1 ]ÎŁk=(1λ−1)⁹Pk.subscriptΣ𝑘1𝜆1subscript𝑃𝑘\Sigma_{k}=(\frac{1}{\lambda}-1)P_{k}.roman_ÎŁ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = ( divide start_ARG 1 end_ARG start_ARG italic_λ end_ARG - 1 ) italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT .
3. Variable-Rate Forgetting [7]λk∈(0,1]subscript𝜆𝑘01\lambda_{k}\in(0,1]italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ ( 0 , 1 ], k≄0𝑘0k\geq 0italic_k ≄ 0ÎŁk=(1λk−1)⁹Pk.subscriptΣ𝑘1subscript𝜆𝑘1subscript𝑃𝑘\Sigma_{k}=(\frac{1}{\lambda_{k}}-1)P_{k}.roman_ÎŁ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = ( divide start_ARG 1 end_ARG start_ARG italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_ARG - 1 ) italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT .
4. Data-Dependent Forgetting [16]Ό−1=1subscript𝜇11\mu_{-1}=1italic_ÎŒ start_POSTSUBSCRIPT - 1 end_POSTSUBSCRIPT = 1 and ÎŒk∈[0,1),k≄0formulae-sequencesubscript𝜇𝑘01𝑘0\mu_{k}\in[0,1),k\geq 0italic_ÎŒ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ [ 0 , 1 ) , italic_k ≄ 0ÎŁk=(ÎŒk(1−Όk)âąÎŒk−1−1)⁹Pk.subscriptΣ𝑘subscript𝜇𝑘1subscript𝜇𝑘subscript𝜇𝑘11subscript𝑃𝑘\Sigma_{k}=(\frac{\mu_{k}}{(1-\mu_{k})\mu_{k-1}}-1)P_{k}.roman_ÎŁ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = ( divide start_ARG italic_ÎŒ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_ARG start_ARG ( 1 - italic_ÎŒ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) italic_ÎŒ start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT end_ARG - 1 ) italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT .
5. Exponential Resetting [12]positive-definite P∞∈ℝn×nsubscript𝑃superscriptℝ𝑛𝑛P_{\infty}\in{\mathbb{R}}^{n\times n}italic_P start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_n × italic_n end_POSTSUPERSCRIPTÎŁk=(λ⁹Pk−1+(1−λ)⁹P∞−1)−1−Pk.subscriptΣ𝑘superscript𝜆superscriptsubscript𝑃𝑘11𝜆superscriptsubscript𝑃11subscript𝑃𝑘\Sigma_{k}=(\lambda P_{k}^{-1}+(1-\lambda)P_{\infty}^{-1})^{-1}-P_{k}.roman_ÎŁ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = ( italic_λ italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT + ( 1 - italic_λ ) italic_P start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT .
6. Covariance Resetting [22]positive-definite P∞∈ℝn×nsubscript𝑃superscriptℝ𝑛𝑛P_{\infty}\in{\mathbb{R}}^{n\times n}italic_P start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_n × italic_n end_POSTSUPERSCRIPT and resetting criteriaΣk={P∞−Pkcriteria met,0n×notherwise.subscriptΣ𝑘casessubscript𝑃subscript𝑃𝑘criteria metsubscript0𝑛𝑛otherwise\Sigma_{k}=\begin{cases}P_{\infty}-P_{k}&\textnormal{criteria met},\\0_{n\times n}&\textnormal{otherwise}.\end{cases}roman_Σ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = { start_ROW start_CELL italic_P start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT - italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_CELL start_CELL criteria met , end_CELL end_ROW start_ROW start_CELL 0 start_POSTSUBSCRIPT italic_n × italic_n end_POSTSUBSCRIPT end_CELL start_CELL otherwise . end_CELL end_ROW
7. Directional Forgetting by
Information Matrix Decomp. [8]
λ∈(0,1]𝜆01\lambda\in(0,1]italic_λ ∈ ( 0 , 1 ]ÎŁk=1âˆ’Î»Î»âąCkT⁹(Ck⁹Pk−1⁹CkT)−1⁹Ck.subscriptΣ𝑘1𝜆𝜆superscriptsubscriptđ¶đ‘˜Tsuperscriptsubscriptđ¶đ‘˜superscriptsubscript𝑃𝑘1superscriptsubscriptđ¶đ‘˜T1subscriptđ¶đ‘˜\Sigma_{k}=\frac{1-\lambda}{\lambda}C_{k}^{\rm T}(C_{k}P_{k}^{-1}C_{k}^{\rm T}%)^{-1}C_{k}.roman_ÎŁ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = divide start_ARG 1 - italic_λ end_ARG start_ARG italic_λ end_ARG italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT ( italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT .
8. Variable-Direction Forgetting [21]Positive-definite Λk∈ℝn×nsubscriptΛ𝑘superscriptℝ𝑛𝑛\Lambda_{k}\in{\mathbb{R}}^{n\times n}roman_Λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_n × italic_n end_POSTSUPERSCRIPT, k≄0𝑘0k\geq 0italic_k ≄ 0ÎŁk=Λk−1⁹Pk−1ⁱΛk−1−Pk.subscriptΣ𝑘superscriptsubscriptΛ𝑘1superscriptsubscript𝑃𝑘1superscriptsubscriptΛ𝑘1subscript𝑃𝑘\Sigma_{k}=\Lambda_{k}^{-1}P_{k}^{-1}\Lambda_{k}^{-1}-P_{k}.roman_ÎŁ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = roman_Λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT roman_Λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT .

V Adaptive Kalman Filtering Developed from RLS Forgetting Algorithms

Thus far, we have shown that various extensions of RLS from the literature are special cases of the Kalman filter, in part, by a special choice of the process noise covariance given by (31).Motivated by this relationship, we propose a class of adaptive Kalman filters by replacing the prior covariance update equation (4) with the adaptive prior covariance update equations

Pforget,ksubscript𝑃forget𝑘\displaystyle P_{{\rm forget},k}italic_P start_POSTSUBSCRIPT roman_forget , italic_k end_POSTSUBSCRIPT=Pk+Σforget,k,absentsubscript𝑃𝑘subscriptΣforget𝑘\displaystyle=P_{k}+\Sigma_{{\rm forget},k},= italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + roman_Σ start_POSTSUBSCRIPT roman_forget , italic_k end_POSTSUBSCRIPT ,(32)
Pk+1|ksubscript𝑃𝑘conditional1𝑘\displaystyle P_{k+1|k}italic_P start_POSTSUBSCRIPT italic_k + 1 | italic_k end_POSTSUBSCRIPT=AkⁱPforget,kⁱAkT+ΣKalman,k,absentsubscript𝐮𝑘subscript𝑃forget𝑘superscriptsubscript𝐮𝑘TsubscriptΣKalman𝑘\displaystyle=A_{k}P_{{\rm forget},k}A_{k}^{\rm T}+\Sigma_{{\rm Kalman},k},= italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT roman_forget , italic_k end_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT + roman_Σ start_POSTSUBSCRIPT roman_Kalman , italic_k end_POSTSUBSCRIPT ,(33)

where, for all k≄0𝑘0k\geq 0italic_k ≄ 0, positive-semidefinite ÎŁforget,k∈ℝn×nsubscriptÎŁforget𝑘superscriptℝ𝑛𝑛\Sigma_{{\rm forget},k}\in{\mathbb{R}}^{n\times n}roman_ÎŁ start_POSTSUBSCRIPT roman_forget , italic_k end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_n × italic_n end_POSTSUPERSCRIPT is designed from an extension of RLS (e.g. right column of Table I), and positive-semidefinite ÎŁKalman,k∈ℝn×nsubscriptÎŁKalman𝑘superscriptℝ𝑛𝑛\Sigma_{{\rm Kalman},k}\in{\mathbb{R}}^{n\times n}roman_ÎŁ start_POSTSUBSCRIPT roman_Kalman , italic_k end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_n × italic_n end_POSTSUPERSCRIPT is designed using traditional methods of the Kalman filter.

While there are as many variants of this algorithm as extensions of RLS, we select a particular extension of RLS to show the potential benefits in state estimation.

V-A Kalman Filter with Robust Variable Forgetting Factor

Consider the mass-spring-damper system in Figure 1, with mass m=10𝑚10m=10italic_m = 10, spring constant k=5𝑘5k=5italic_k = 5, and damping coefficient c=3𝑐3c=3italic_c = 3.The vertical displacement of the mass at time t𝑡titalic_t is z⁹(t)𝑧𝑡z(t)italic_z ( italic_t ), where z=0𝑧0z=0italic_z = 0 when the mass is at rest.Assume that z⁹(0)=−1𝑧01z(0)=-1italic_z ( 0 ) = - 1 and z˙ⁱ(0)=1˙𝑧01\dot{z}(0)=1over˙ start_ARG italic_z end_ARG ( 0 ) = 1Furthermore, a downward force F⁹(t)=10⁹sin⁥(t)đč𝑡10𝑡F(t)=10\sin(t)italic_F ( italic_t ) = 10 roman_sin ( italic_t ) is applied on the mass at time t𝑡titalic_t.This nominal mass-spring-damper system can be modeled as

[z˙ⁱ(t)zš⁹(t)]=[01−k/m−b/m]⁹[z⁹(t)z˙ⁱ(t)]+[01/m]⁹F⁹(t).matrix˙𝑧𝑡¹𝑧𝑡matrix01𝑘𝑚𝑏𝑚matrix𝑧𝑡˙𝑧𝑡matrix01𝑚đč𝑡\displaystyle\begin{bmatrix}\dot{z}(t)\\\ddot{z}(t)\end{bmatrix}=\begin{bmatrix}0&1\\-\nicefrac{{k}}{{m}}&-\nicefrac{{b}}{{m}}\end{bmatrix}\begin{bmatrix}z(t)\\\dot{z}(t)\end{bmatrix}+\begin{bmatrix}0\\\nicefrac{{1}}{{m}}\end{bmatrix}F(t).[ start_ARG start_ROW start_CELL over˙ start_ARG italic_z end_ARG ( italic_t ) end_CELL end_ROW start_ROW start_CELL overš start_ARG italic_z end_ARG ( italic_t ) end_CELL end_ROW end_ARG ] = [ start_ARG start_ROW start_CELL 0 end_CELL start_CELL 1 end_CELL end_ROW start_ROW start_CELL - / start_ARG italic_k end_ARG start_ARG italic_m end_ARG end_CELL start_CELL - / start_ARG italic_b end_ARG start_ARG italic_m end_ARG end_CELL end_ROW end_ARG ] [ start_ARG start_ROW start_CELL italic_z ( italic_t ) end_CELL end_ROW start_ROW start_CELL over˙ start_ARG italic_z end_ARG ( italic_t ) end_CELL end_ROW end_ARG ] + [ start_ARG start_ROW start_CELL 0 end_CELL end_ROW start_ROW start_CELL / start_ARG 1 end_ARG start_ARG italic_m end_ARG end_CELL end_ROW end_ARG ] italic_F ( italic_t ) .(42)

However, we additionally assume there is a wall at z=2𝑧2z=2italic_z = 2. If the mass collides with this wall, the mass reverses direction with the same speed.Note that such intermittent collisions can be interpreted as impulsive disturbances on the system.Finally, we consider, for all k≄0𝑘0k\geq 0italic_k ≄ 0, the measurements yk∈ℝsubscript𝑩𝑘ℝy_{k}\in{\mathbb{R}}italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ blackboard_R, given by

yk=zⁱ(kⁱTs)+z˙ⁱ(kⁱTs)+vk,subscript𝑩𝑘𝑧𝑘subscript𝑇𝑠˙𝑧𝑘subscript𝑇𝑠subscript𝑣𝑘\displaystyle y_{k}=z(kT_{s})+\dot{z}(kT_{s})+v_{k},italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = italic_z ( italic_k italic_T start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) + over˙ start_ARG italic_z end_ARG ( italic_k italic_T start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) + italic_v start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ,(43)

where Ts=0.1subscript𝑇𝑠0.1T_{s}=0.1italic_T start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT = 0.1 is the sampling time and, for all k≄0𝑘0k\geq 0italic_k ≄ 0, vkâˆŒđ’©âą(0,Γk)similar-tosubscriptđ‘Łđ‘˜đ’©0subscriptΓ𝑘v_{k}\sim\mathcal{N}(0,\Gamma_{k})italic_v start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∌ caligraphic_N ( 0 , roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) is the measurement noise with Γk=0.01subscriptΓ𝑘0.01\Gamma_{k}=0.01roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = 0.01.The goal is to estimate the vertical displacement z⁹(t)𝑧𝑡z(t)italic_z ( italic_t ) and velocity z˙ⁱ(t)˙𝑧𝑡\dot{z}(t)over˙ start_ARG italic_z end_ARG ( italic_t ) without knowledge of the wall at z=2𝑧2z=2italic_z = 2.We will assume that the nominal model (42) and the measurement noise covariance ΓksubscriptΓ𝑘\Gamma_{k}roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT are known.

Adaptive Kalman Filtering Developed from Recursive Least Squares Forgetting Algorithms (1)

We begin by discretizing (42) and (43) using zero-order hold and sampling time Tssubscript𝑇𝑠T_{s}italic_T start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT to obtain the nominal system

xk+1subscriptđ‘„đ‘˜1\displaystyle x_{k+1}italic_x start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT=Ak⁹xk+Bk⁹uk,absentsubscript𝐮𝑘subscriptđ‘„đ‘˜subscriptđ”đ‘˜subscript𝑱𝑘\displaystyle=A_{k}x_{k}+B_{k}u_{k},= italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + italic_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ,
yksubscript𝑩𝑘\displaystyle y_{k}italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT=Ck⁹xk+vk,absentsubscriptđ¶đ‘˜subscriptđ‘„đ‘˜subscript𝑣𝑘\displaystyle=C_{k}x_{k}+v_{k},= italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ,(44)

where, for all k≄0𝑘0k\geq 0italic_k ≄ 0, xk≜[z⁹(k⁹Ts)⁹z˙ⁱ(k⁹Ts)]T≜subscriptđ‘„đ‘˜superscriptdelimited-[]𝑧𝑘subscript𝑇𝑠˙𝑧𝑘subscript𝑇𝑠Tx_{k}\triangleq[z(kT_{s})\ \dot{z}(kT_{s})]^{\rm T}italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ≜ [ italic_z ( italic_k italic_T start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) over˙ start_ARG italic_z end_ARG ( italic_k italic_T start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) ] start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT, uk≜F⁹(k⁹Ts)≜subscript𝑱𝑘đč𝑘subscript𝑇𝑠u_{k}\triangleq F(kT_{s})italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ≜ italic_F ( italic_k italic_T start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ),

Aksubscript𝐮𝑘\displaystyle A_{k}italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT≜[0.99750.09843−0.049220.9680],Bk≜[4.948×10−49.843×10−3],formulae-sequence≜absentmatrix0.99750.098430.049220.9680≜subscriptđ”đ‘˜matrix4.948E-49.843E-3\displaystyle\triangleq\begin{bmatrix}0.9975&0.09843\\-0.04922&0.9680\end{bmatrix},\ B_{k}\triangleq\begin{bmatrix}$4.948\text{%\times}{10}^{-4}$\\$9.843\text{\times}{10}^{-3}$\end{bmatrix},≜ [ start_ARG start_ROW start_CELL 0.9975 end_CELL start_CELL 0.09843 end_CELL end_ROW start_ROW start_CELL - 0.04922 end_CELL start_CELL 0.9680 end_CELL end_ROW end_ARG ] , italic_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ≜ [ start_ARG start_ROW start_CELL start_ARG 4.948 end_ARG start_ARG times end_ARG start_ARG power start_ARG 10 end_ARG start_ARG - 4 end_ARG end_ARG end_CELL end_ROW start_ROW start_CELL start_ARG 9.843 end_ARG start_ARG times end_ARG start_ARG power start_ARG 10 end_ARG start_ARG - 3 end_ARG end_ARG end_CELL end_ROW end_ARG ] ,(49)
Cksubscriptđ¶đ‘˜\displaystyle C_{k}italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT≜[11].≜absentmatrix11\displaystyle\triangleq\begin{bmatrix}1&1\end{bmatrix}.≜ [ start_ARG start_ROW start_CELL 1 end_CELL start_CELL 1 end_CELL end_ROW end_ARG ] .(51)

We first consider state estimation using the Kalman filter with the nominal discrete system (44), and P0=0.1⁹I2subscript𝑃00.1subscriptđŒ2P_{0}=0.1I_{2}italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 0.1 italic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, x^0=[0 0]Tsubscript^đ‘„0superscriptdelimited-[]00T\hat{x}_{0}=[0\ 0]^{\rm T}over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = [ 0 0 ] start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT, and, for all k≄0𝑘0k\geq 0italic_k ≄ 0, Γk=0.01subscriptΓ𝑘0.01\Gamma_{k}=0.01roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = 0.01, ÎŁk=0.01⁹I2subscriptΣ𝑘0.01subscriptđŒ2\Sigma_{k}=0.01I_{2}roman_ÎŁ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = 0.01 italic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT.

Second, we will consider an adaptive Kalman filter with adaptive prior covariance update equations (32) and (33) developed from variable-rate forgetting [7].This adaptive Kalman filter also uses the nominal discrete system (44), and P0=0.1⁹I2subscript𝑃00.1subscriptđŒ2P_{0}=0.1I_{2}italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 0.1 italic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, x^0=[0 0]Tsubscript^đ‘„0superscriptdelimited-[]00T\hat{x}_{0}=[0\ 0]^{\rm T}over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = [ 0 0 ] start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT, and, for all k≄0𝑘0k\geq 0italic_k ≄ 0, Γk=0.01subscriptΓ𝑘0.01\Gamma_{k}=0.01roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = 0.01.Then, for all k≄0𝑘0k\geq 0italic_k ≄ 0, let

ÎŁKalman,k=0.01⁹I2,ÎŁforget,k=(1λk−1)⁹Pk,formulae-sequencesubscriptÎŁKalman𝑘0.01subscriptđŒ2subscriptÎŁforget𝑘1subscript𝜆𝑘1subscript𝑃𝑘\displaystyle\Sigma_{{\rm Kalman},k}=0.01I_{2},\quad\Sigma_{{\rm forget},k}=(%\frac{1}{\lambda_{k}}-1)P_{k},roman_ÎŁ start_POSTSUBSCRIPT roman_Kalman , italic_k end_POSTSUBSCRIPT = 0.01 italic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , roman_ÎŁ start_POSTSUBSCRIPT roman_forget , italic_k end_POSTSUBSCRIPT = ( divide start_ARG 1 end_ARG start_ARG italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_ARG - 1 ) italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ,(52)

where, the forgetting factor λk∈(0,1]subscript𝜆𝑘01\lambda_{k}\in(0,1]italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ ( 0 , 1 ] is chosen using the robust variable forgetting factor algorithm developed in [14].We’ve chosen this algorithm for its ability to improve tracking of impulsive changes of parameters [14].For all k≄0𝑘0k\geq 0italic_k ≄ 0, let

σ^e,k2superscriptsubscript^𝜎𝑒𝑘2\displaystyle\hat{\sigma}_{e,k}^{2}over^ start_ARG italic_σ end_ARG start_POSTSUBSCRIPT italic_e , italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT=Î±âąÏƒ^e,k−12+(1−α)⁹(yk−Ck⁹x^k)2,absentđ›Œsuperscriptsubscript^𝜎𝑒𝑘121đ›Œsuperscriptsubscript𝑩𝑘subscriptđ¶đ‘˜subscript^đ‘„đ‘˜2\displaystyle=\alpha\hat{\sigma}_{e,k-1}^{2}+(1-\alpha)(y_{k}-C_{k}\hat{x}_{k}%)^{2},= italic_α over^ start_ARG italic_σ end_ARG start_POSTSUBSCRIPT italic_e , italic_k - 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ( 1 - italic_α ) ( italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT - italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ,(53)
σ^q,k2superscriptsubscript^𝜎𝑞𝑘2\displaystyle\hat{\sigma}_{q,k}^{2}over^ start_ARG italic_σ end_ARG start_POSTSUBSCRIPT italic_q , italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT=Î±âąÏƒ^q,k−12+(1−α)⁹(x^kT⁹Pk⁹x^k)2,absentđ›Œsuperscriptsubscript^𝜎𝑞𝑘121đ›Œsuperscriptsuperscriptsubscript^đ‘„đ‘˜Tsubscript𝑃𝑘subscript^đ‘„đ‘˜2\displaystyle=\alpha\hat{\sigma}_{q,k-1}^{2}+(1-\alpha)(\hat{x}_{k}^{\rm T}P_{%k}\hat{x}_{k})^{2},= italic_α over^ start_ARG italic_σ end_ARG start_POSTSUBSCRIPT italic_q , italic_k - 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ( 1 - italic_α ) ( over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ,(54)
σ^v,k2superscriptsubscript^𝜎𝑣𝑘2\displaystyle\hat{\sigma}_{v,k}^{2}over^ start_ARG italic_σ end_ARG start_POSTSUBSCRIPT italic_v , italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT=ÎČâąÏƒ^v,k−12+(1−ÎČ)⁹(yk−Ck⁹x^k)2,absentđ›œsuperscriptsubscript^𝜎𝑣𝑘121đ›œsuperscriptsubscript𝑩𝑘subscriptđ¶đ‘˜subscript^đ‘„đ‘˜2\displaystyle=\beta\hat{\sigma}_{v,k-1}^{2}+(1-\beta)(y_{k}-C_{k}\hat{x}_{k})^%{2},= italic_ÎČ over^ start_ARG italic_σ end_ARG start_POSTSUBSCRIPT italic_v , italic_k - 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ( 1 - italic_ÎČ ) ( italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT - italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ,(55)

where σ^e,−1≜σ^q,−1≜σ^v,−1≜1≜subscript^𝜎𝑒1subscript^𝜎𝑞1≜subscript^𝜎𝑣1≜1\hat{\sigma}_{e,-1}\triangleq\hat{\sigma}_{q,-1}\triangleq\hat{\sigma}_{v,-1}\triangleq1over^ start_ARG italic_σ end_ARG start_POSTSUBSCRIPT italic_e , - 1 end_POSTSUBSCRIPT ≜ over^ start_ARG italic_σ end_ARG start_POSTSUBSCRIPT italic_q , - 1 end_POSTSUBSCRIPT ≜ over^ start_ARG italic_σ end_ARG start_POSTSUBSCRIPT italic_v , - 1 end_POSTSUBSCRIPT ≜ 1, α≜1−1Kα⁹nâ‰œđ›Œ11subscriptđŸđ›Œđ‘›\alpha\triangleq 1-\frac{1}{K_{\alpha}n}italic_α ≜ 1 - divide start_ARG 1 end_ARG start_ARG italic_K start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT italic_n end_ARG, and ÎČ≜1−1KÎČ⁹nâ‰œđ›œ11subscriptđŸđ›œđ‘›\beta\triangleq 1-\frac{1}{K_{\beta}n}italic_ÎČ â‰œ 1 - divide start_ARG 1 end_ARG start_ARG italic_K start_POSTSUBSCRIPT italic_ÎČ end_POSTSUBSCRIPT italic_n end_ARG, where Kα≜2≜subscriptđŸđ›Œ2K_{\alpha}\triangleq 2italic_K start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ≜ 2, KÎČ≜10≜subscriptđŸđ›œ10K_{\beta}\triangleq 10italic_K start_POSTSUBSCRIPT italic_ÎČ end_POSTSUBSCRIPT ≜ 10, and n=2𝑛2n=2italic_n = 2 since the system is second-order.

Then, for all k≄0𝑘0k\geq 0italic_k ≄ 0, if σ^e,k≀σ^v,ksubscript^𝜎𝑒𝑘subscript^𝜎𝑣𝑘\hat{\sigma}_{e,k}\leq\hat{\sigma}_{v,k}over^ start_ARG italic_σ end_ARG start_POSTSUBSCRIPT italic_e , italic_k end_POSTSUBSCRIPT ≀ over^ start_ARG italic_σ end_ARG start_POSTSUBSCRIPT italic_v , italic_k end_POSTSUBSCRIPT, λk=λmaxsubscript𝜆𝑘subscript𝜆max\lambda_{k}=\lambda_{\rm max}italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = italic_λ start_POSTSUBSCRIPT roman_max end_POSTSUBSCRIPT, otherwise

λk=max⁥{min⁥{σ^q,kâąÏƒ^v,kΟ+|σ^e,k−σ^v,k|,λmax},λmin},subscript𝜆𝑘subscript^𝜎𝑞𝑘subscript^𝜎𝑣𝑘𝜉subscript^𝜎𝑒𝑘subscript^𝜎𝑣𝑘subscript𝜆maxsubscript𝜆min\displaystyle\lambda_{k}=\max\left\{\min\left\{\frac{\hat{\sigma}_{q,k}\hat{%\sigma}_{v,k}}{\xi+|\hat{\sigma}_{e,k}-\hat{\sigma}_{v,k}|},\lambda_{\rm max}%\right\},\lambda_{\rm min}\right\},italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = roman_max { roman_min { divide start_ARG over^ start_ARG italic_σ end_ARG start_POSTSUBSCRIPT italic_q , italic_k end_POSTSUBSCRIPT over^ start_ARG italic_σ end_ARG start_POSTSUBSCRIPT italic_v , italic_k end_POSTSUBSCRIPT end_ARG start_ARG italic_Ο + | over^ start_ARG italic_σ end_ARG start_POSTSUBSCRIPT italic_e , italic_k end_POSTSUBSCRIPT - over^ start_ARG italic_σ end_ARG start_POSTSUBSCRIPT italic_v , italic_k end_POSTSUBSCRIPT | end_ARG , italic_λ start_POSTSUBSCRIPT roman_max end_POSTSUBSCRIPT } , italic_λ start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT } ,(56)

where Ο≜10−6≜𝜉superscript106\xi\triangleq 10^{-6}italic_Ο ≜ 10 start_POSTSUPERSCRIPT - 6 end_POSTSUPERSCRIPT, λmin≜0.5≜subscript𝜆min0.5\lambda_{\rm min}\triangleq 0.5italic_λ start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT ≜ 0.5, and λmax≜1≜subscript𝜆max1\lambda_{\rm max}\triangleq 1italic_λ start_POSTSUBSCRIPT roman_max end_POSTSUBSCRIPT ≜ 1.For details on robust variable forgetting and tuning of parameters, see [14].

Figure 2 shows state estimation of the Kalman filter (KF) and the adaptive Kalman filter (KF*), as well as the forgetting factor λksubscript𝜆𝑘\lambda_{k}italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT, all with zero-order hold.Note that after each of the four collisions the mass makes with the wall at z=2𝑧2z=2italic_z = 2, the forgetting factor λksubscript𝜆𝑘\lambda_{k}italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT briefly but drastically decreases.This results in improved displacement and velocity estimation immediately after each collision.This can be more clearly seen in the error between the true state and the estimated state in Figure 3.Figure 4 shows σz^subscript𝜎^𝑧\sigma_{\hat{z}}italic_σ start_POSTSUBSCRIPT over^ start_ARG italic_z end_ARG end_POSTSUBSCRIPT and σz˙^subscript𝜎^˙𝑧\sigma_{\hat{\dot{z}}}italic_σ start_POSTSUBSCRIPT over^ start_ARG over˙ start_ARG italic_z end_ARG end_ARG end_POSTSUBSCRIPT, the diagonal elements of the covariance matrix Pksubscript𝑃𝑘P_{k}italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT, which can also be interpreted as the marginal variance of the displacement and velocity state estimate, respectively.Note that in the adaptive Kalman filter (KF*), there is a sudden increase in both σz^subscript𝜎^𝑧\sigma_{\hat{z}}italic_σ start_POSTSUBSCRIPT over^ start_ARG italic_z end_ARG end_POSTSUBSCRIPT and σz˙^subscript𝜎^˙𝑧\sigma_{\hat{\dot{z}}}italic_σ start_POSTSUBSCRIPT over^ start_ARG over˙ start_ARG italic_z end_ARG end_ARG end_POSTSUBSCRIPT after each collision, allowing for quicker adaptation.

Adaptive Kalman Filtering Developed from Recursive Least Squares Forgetting Algorithms (2)
Adaptive Kalman Filtering Developed from Recursive Least Squares Forgetting Algorithms (3)
Adaptive Kalman Filtering Developed from Recursive Least Squares Forgetting Algorithms (4)

VI Conclusion

This work presents the Kalman filter least squares cost function whose recursive minimizer gives the Kalman filter update equations.An important consequence of this cost function is that various extensions of RLS from the literature are special cases of the Kalman filter.Motivated by this result, we propose a new adaptive Kalman filters, whose prior covariance update is modified to include RLS forgetting.While the numerical example we presented shows the potential benefits of adaptive Kalman filtering with robust variable forgetting factor [14] in the presence of impulsive disturbances, there are numerous other forgetting algorithms in the RLS literature to be considered (several summarized in Table I).Future work includes further exploration into how, and in what situations, such extensions may be beneficial.

References

  • [1]H.W. Sorenson, “Least-squares estimation: from gauss to kalman,” IEEE Spectrum, vol.7, no.7, pp. 63–68, 1970.
  • [2]S.Islam and D.Bernstein, “Recursive least squares for real-time implementation,” IEEE Ctrl. Sys. Mag., vol.39, no.3, p.82, 2019.
  • [3]K.J. Åström and B.Wittenmark, Adaptive control.Courier Co., 2013.
  • [4]J.L. Crassidis and J.L. Junkins, Optimal estimation of dynamic systems.Chapman and Hall/CRC, 2004.
  • [5]D.Simon, Optimal state estimation: Kalman, H infinity, and nonlinear approaches.John Wiley & Sons, 2006.
  • [6]L.Ljung and T.Söderström, Theory and practice of recursive identification.MIT press, 1983.
  • [7]A.L. Bruce, A.Goel, and D.S. Bernstein, “Convergence and consistency of recursive least squares with variable-rate forgetting,” Automatica, vol. 119, p. 109052, 2020.
  • [8]L.Cao and H.Schwartz, “A directional forgetting algorithm based on the decomposition of the information matrix,” Automatica, vol.36, no.11, pp. 1725–1731, 2000.
  • [9]R.Kulhavỳ and M.KĂĄrnỳ, “Tracking of slowly varying parameters by directional forgetting,” IFAC Proceedings Volumes, vol.17, no.2, pp. 687–692, 1984.
  • [10]S.Bittanti, P.Bolzern, and M.Campi, “Convergence and exponential convergence of identification algorithms with directional forgetting factor,” Automatica, vol.26, no.5, pp. 929–932, 1990.
  • [11]M.E. Salgado, G.C. Goodwin, and R.H. Middleton, “Modified least squares algorithm incorporating exponential resetting and forgetting,” International Journal of Control, vol.47, no.2, pp. 477–491, 1988.
  • [12]B.Lai and D.S. Bernstein, “Exponential resetting and cyclic resetting recursive least squares,” IEEE Ctrl. Sys. Lets., vol.7, pp. 985–990, 2023.
  • [13]A.Vahidi etal., “Recursive least squares with forgetting for online estimation of vehicle mass and road grade: theory and experiments,” Vehicle Sys. Dynms., vol.43, no.1, pp. 31–55, 2005.
  • [14]C.Paleologu, J.Benesty, and S.Ciochina, “A robust variable forgetting factor recursive least-squares algorithm for system identification,” IEEE Signal Processing Letters, vol.15, pp. 597–600, 2008.
  • [15]R.M. Johnstone, C.R. JohnsonJr, R.R. Bitmead, and B.D. Anderson, “Exponential convergence of recursive least squares with exponential forgetting factor,” Sys. & Ctrl. Letters, vol.2, no.2, pp. 77–82, 1982.
  • [16]S.Dasgupta and Y.-F. Huang, “Asymptotically convergent modified recursive least-squares with data-dependent updating and forgetting factor for systems with bounded noise,” IEEE Transactions on Information Theory, vol.33, no.3, pp. 383–392, 1987.
  • [17]J.Humpherys and J.West, “Kalman filtering with newton’s method,” IEEE Control Systems Magazine, vol.30, no.6, pp. 101–106, 2010.
  • [18]J.Humpherys, P.Redd, and J.West, “A fresh look at the kalman filter,” SIAM review, vol.54, no.4, pp. 801–823, 2012.
  • [19]B.Lai and D.S. Bernstein, “Generalized forgetting recursive least squares: Stability and robustness guarantees,” 2023.
  • [20]R.E. Kalman, “A new approach to linear filtering and prediction problems,” Transactions of the ASME–Journal of Basic Engineering, vol.82, no. Series D, pp. 35–45, 1960.
  • [21]A.Goel, A.L. Bruce, and D.S. Bernstein, “Recursive least squares with variable-direction forgetting: Compensating for the loss of persistency,” IEEE Ctrl. Sys. Mag., vol.40, no.4, pp. 80–102, 2020.
  • [22]G.Goodwin, E.Teoh, and H.Elliott, “Deterministic convergence of a self-tuning regulator with covariance resetting,” in IEE Proceedings D-Control Theory and Applications, vol.1, no. 130, 1983, pp. 6–8.

Appendix

Lemma 1.

Let A∈ℝn×n𝐮superscriptℝ𝑛𝑛A\in{\mathbb{R}}^{n\times n}italic_A ∈ blackboard_R start_POSTSUPERSCRIPT italic_n × italic_n end_POSTSUPERSCRIPT, U∈ℝn×p𝑈superscriptℝ𝑛𝑝U\in{\mathbb{R}}^{n\times p}italic_U ∈ blackboard_R start_POSTSUPERSCRIPT italic_n × italic_p end_POSTSUPERSCRIPT, C∈ℝp×pđ¶superscriptℝ𝑝𝑝C\in{\mathbb{R}}^{p\times p}italic_C ∈ blackboard_R start_POSTSUPERSCRIPT italic_p × italic_p end_POSTSUPERSCRIPT, V∈ℝp×n𝑉superscriptℝ𝑝𝑛V\in{\mathbb{R}}^{p\times n}italic_V ∈ blackboard_R start_POSTSUPERSCRIPT italic_p × italic_n end_POSTSUPERSCRIPT. Assume A𝐮Aitalic_A, Cđ¶Citalic_C, and A+U⁹C⁹VđŽđ‘ˆđ¶đ‘‰A+UCVitalic_A + italic_U italic_C italic_V are nonsingular. Then, (A+U⁹C⁹V)−1=A−1−A−1⁹U⁹(C−1+V⁹A−1⁹U)−1⁹V⁹A−1superscriptđŽđ‘ˆđ¶đ‘‰1superscript𝐮1superscript𝐮1𝑈superscriptsuperscriptđ¶1𝑉superscript𝐮1𝑈1𝑉superscript𝐮1(A+UCV)^{-1}=A^{-1}-A^{-1}U(C^{-1}+VA^{-1}U)^{-1}VA^{-1}( italic_A + italic_U italic_C italic_V ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = italic_A start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_A start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_U ( italic_C start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT + italic_V italic_A start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_U ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_V italic_A start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT.

Lemma 2.

Let A∈ℝn×n𝐮superscriptℝ𝑛𝑛A\in{\mathbb{R}}^{n\times n}italic_A ∈ blackboard_R start_POSTSUPERSCRIPT italic_n × italic_n end_POSTSUPERSCRIPT be positive definite, let b∈ℝn𝑏superscriptℝ𝑛b\in{\mathbb{R}}^{n}italic_b ∈ blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT and c∈ℝ𝑐ℝc\in{\mathbb{R}}italic_c ∈ blackboard_R, and define f:ℝn→ℝnormal-:𝑓normal-→superscriptℝ𝑛ℝf\colon{\mathbb{R}}^{n}\rightarrow{\mathbb{R}}italic_f : blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT → blackboard_R by f⁹(x)≜xT⁹A⁹x+2⁹bT⁹x+cnormal-â‰œđ‘“đ‘„superscriptđ‘„normal-TđŽđ‘„2superscript𝑏normal-Tđ‘„đ‘f(x)\triangleq x^{\rm T}Ax+2b^{\rm T}x+citalic_f ( italic_x ) ≜ italic_x start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT italic_A italic_x + 2 italic_b start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT italic_x + italic_c.Then, f𝑓fitalic_f has a unique stationary point, which is the global minimizer given by arg⁹minx∈ℝn⁥f⁹(x)=−A−1⁹bsubscriptnormal-argnormal-minđ‘„superscriptâ„đ‘›đ‘“đ‘„superscript𝐮1𝑏\operatorname*{arg\,min}_{x\in{\mathbb{R}}^{n}}f(x)=-A^{-1}bstart_OPERATOR roman_arg roman_min end_OPERATOR start_POSTSUBSCRIPT italic_x ∈ blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_POSTSUBSCRIPT italic_f ( italic_x ) = - italic_A start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_b.

Proof of Theorem 1.

We write J0⁹(x^)subscriptđœ0^đ‘„J_{0}(\hat{x})italic_J start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG ), given by (19), as

J0⁹(x^)=‖y0−C0⁹x^‖Γ0−12+‖A0−1⁹(x^−B0⁹u0)−x^0‖P0−1−F02,subscriptđœ0^đ‘„superscriptsubscriptnormsubscript𝑩0subscriptđ¶0^đ‘„superscriptsubscriptΓ012superscriptsubscriptnormsuperscriptsubscript𝐮01^đ‘„subscriptđ”0subscript𝑱0subscript^đ‘„0superscriptsubscript𝑃01subscriptđč02\displaystyle J_{0}(\hat{x})=\|y_{0}-C_{0}\hat{x}\|_{\Gamma_{0}^{-1}}^{2}+\|A_%{0}^{-1}(\hat{x}-B_{0}u_{0})-\hat{x}_{0}\|_{P_{0}^{-1}-F_{0}}^{2},italic_J start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG ) = ∄ italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT - italic_C start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT over^ start_ARG italic_x end_ARG ∄ start_POSTSUBSCRIPT roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ∄ italic_A start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( over^ start_ARG italic_x end_ARG - italic_B start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) - over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∄ start_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ,
=‖y0−C0⁹x^‖Γ0−12+‖x^−(A0⁹x^0+B0⁹u0)‖A0−T⁹(P0−1−F0)⁹A0−12absentsuperscriptsubscriptnormsubscript𝑩0subscriptđ¶0^đ‘„superscriptsubscriptΓ012superscriptsubscriptnorm^đ‘„subscript𝐮0subscript^đ‘„0subscriptđ”0subscript𝑱0superscriptsubscript𝐮0Tsuperscriptsubscript𝑃01subscriptđč0superscriptsubscript𝐮012\displaystyle=\|y_{0}-C_{0}\hat{x}\|_{\Gamma_{0}^{-1}}^{2}+\|\hat{x}-(A_{0}%\hat{x}_{0}+B_{0}u_{0})\|_{A_{0}^{-{\rm T}}(P_{0}^{-1}-F_{0})A_{0}^{-1}}^{2}= ∄ italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT - italic_C start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT over^ start_ARG italic_x end_ARG ∄ start_POSTSUBSCRIPT roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ∄ over^ start_ARG italic_x end_ARG - ( italic_A start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_B start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ∄ start_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - roman_T end_POSTSUPERSCRIPT ( italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) italic_A start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT

Next, we expand J0⁹(x^)=x^T⁹H0⁹x^+2⁹b0T⁹x^+c0subscriptđœ0^đ‘„superscript^đ‘„Tsubscriptđ»0^đ‘„2superscriptsubscript𝑏0T^đ‘„subscript𝑐0J_{0}(\hat{x})=\hat{x}^{\rm T}H_{0}\hat{x}+2b_{0}^{\rm T}\hat{x}+c_{0}italic_J start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG ) = over^ start_ARG italic_x end_ARG start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT over^ start_ARG italic_x end_ARG + 2 italic_b start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT over^ start_ARG italic_x end_ARG + italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, where

H0subscriptđ»0\displaystyle H_{0}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT≜C0TⁱΓ0−1⁹C0+A0−T⁹(P0−1−F0)⁹A0−1≜absentsuperscriptsubscriptđ¶0TsuperscriptsubscriptΓ01subscriptđ¶0superscriptsubscript𝐮0Tsuperscriptsubscript𝑃01subscriptđč0superscriptsubscript𝐮01\displaystyle\triangleq C_{0}^{\rm T}\Gamma_{0}^{-1}C_{0}+A_{0}^{-{\rm T}}(P_{%0}^{-1}-F_{0})A_{0}^{-1}≜ italic_C start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_A start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - roman_T end_POSTSUPERSCRIPT ( italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) italic_A start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT(57)
b0subscript𝑏0\displaystyle b_{0}italic_b start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT≜−C0TⁱΓ0−1⁹y0−A0−T⁹(P0−1−F0)⁹A0−1⁹(A0⁹x^0+B0⁹u0)≜absentsuperscriptsubscriptđ¶0TsuperscriptsubscriptΓ01subscript𝑩0superscriptsubscript𝐮0Tsuperscriptsubscript𝑃01subscriptđč0superscriptsubscript𝐮01subscript𝐮0subscript^đ‘„0subscriptđ”0subscript𝑱0\displaystyle\triangleq-C_{0}^{\rm T}\Gamma_{0}^{-1}y_{0}-A_{0}^{-{\rm T}}(P_{%0}^{-1}-F_{0})A_{0}^{-1}(A_{0}\hat{x}_{0}+B_{0}u_{0})≜ - italic_C start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT - italic_A start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - roman_T end_POSTSUPERSCRIPT ( italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) italic_A start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_A start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_B start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT )
c0subscript𝑐0\displaystyle c_{0}italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT≜y0TⁱΓ0−1⁹y0+‖A0−1⁹(A0⁹x^0+B0⁹u0)‖P0−1−F02≜absentsuperscriptsubscript𝑩0TsuperscriptsubscriptΓ01subscript𝑩0superscriptsubscriptnormsuperscriptsubscript𝐮01subscript𝐮0subscript^đ‘„0subscriptđ”0subscript𝑱0superscriptsubscript𝑃01subscriptđč02\displaystyle\triangleq y_{0}^{\rm T}\Gamma_{0}^{-1}y_{0}+\|A_{0}^{-1}(A_{0}%\hat{x}_{0}+B_{0}u_{0})\|_{P_{0}^{-1}-F_{0}}^{2}≜ italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + ∄ italic_A start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_A start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_B start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ∄ start_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT

Defining P1≜H0−1≜subscript𝑃1superscriptsubscriptđ»01P_{1}\triangleq H_{0}^{-1}italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≜ italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, it follows from the expression of H0subscriptđ»0H_{0}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT that (23) is satisfied for k=0𝑘0k=0italic_k = 0.Furthermore, if k=0𝑘0k=0italic_k = 0, (18) simplifies to F0â‰șP0−1precedessubscriptđč0superscriptsubscript𝑃01F_{0}\prec P_{0}^{-1}italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT â‰ș italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT and hence P0−1−F0≻0succeedssuperscriptsubscript𝑃01subscriptđč00P_{0}^{-1}-F_{0}\succ 0italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≻ 0.Furthermore, since Γ0subscriptΓ0\Gamma_{0}roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is positive definite, it follows from definition (57) that H0subscriptđ»0H_{0}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is positive definite.Therefore, from Lemma 2, it follows that the unique minimizer x^1subscript^đ‘„1\hat{x}_{1}over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT of J0subscriptđœ0J_{0}italic_J start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is given by x^1=−H0−1⁹b0subscript^đ‘„1superscriptsubscriptđ»01subscript𝑏0\hat{x}_{1}=-H_{0}^{-1}b_{0}over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = - italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, which can be expanded as

x^1=subscript^đ‘„1absent\displaystyle\hat{x}_{1}=over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT =P1⁹[C0TⁱΓ0−1⁹y0+A0−T⁹(P0−1−F0)⁹A0−1⁹(A0⁹x^0+B0⁹u0)]subscript𝑃1delimited-[]superscriptsubscriptđ¶0TsuperscriptsubscriptΓ01subscript𝑩0superscriptsubscript𝐮0Tsuperscriptsubscript𝑃01subscriptđč0superscriptsubscript𝐮01subscript𝐮0subscript^đ‘„0subscriptđ”0subscript𝑱0\displaystyle P_{1}\big{[}C_{0}^{\rm T}\Gamma_{0}^{-1}y_{0}+A_{0}^{-{\rm T}}(P%_{0}^{-1}-F_{0})A_{0}^{-1}(A_{0}\hat{x}_{0}+B_{0}u_{0})\big{]}italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT [ italic_C start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_A start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - roman_T end_POSTSUPERSCRIPT ( italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) italic_A start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_A start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_B start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ]
=\displaystyle==P1[C0TΓ0−1y0−C0TΓ0−1C0(A0x^0+B0u0)\displaystyle P_{1}\big{[}C_{0}^{\rm T}\Gamma_{0}^{-1}y_{0}-C_{0}^{\rm T}%\Gamma_{0}^{-1}C_{0}(A_{0}\hat{x}_{0}+B_{0}u_{0})italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT [ italic_C start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT - italic_C start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_A start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_B start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT )
+(A0−T(P0−1−F0)A0−1+C0TΓ0−1C0)(A0x^0+B0u0)]\displaystyle+(A_{0}^{-{\rm T}}(P_{0}^{-1}-F_{0})A_{0}^{-1}+C_{0}^{\rm T}%\Gamma_{0}^{-1}C_{0})(A_{0}\hat{x}_{0}+B_{0}u_{0})\big{]}+ ( italic_A start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - roman_T end_POSTSUPERSCRIPT ( italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) italic_A start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT + italic_C start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ( italic_A start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_B start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ]
=\displaystyle==P1[C0TΓ0−1y0−C0TΓ0−1C0(A0x^0+B0u0)\displaystyle P_{1}\big{[}C_{0}^{\rm T}\Gamma_{0}^{-1}y_{0}-C_{0}^{\rm T}%\Gamma_{0}^{-1}C_{0}(A_{0}\hat{x}_{0}+B_{0}u_{0})italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT [ italic_C start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT - italic_C start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_A start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_B start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT )
+P1−1(A0x^0+B0u0)]\displaystyle+P_{1}^{-1}(A_{0}\hat{x}_{0}+B_{0}u_{0})\big{]}+ italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_A start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_B start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ]
=\displaystyle==A0⁹x^0+B0⁹u0+P1⁹C0TⁱΓ0−1⁹(y0−C0⁹(A0⁹x^0+B0⁹u0)).subscript𝐮0subscript^đ‘„0subscriptđ”0subscript𝑱0subscript𝑃1superscriptsubscriptđ¶0TsuperscriptsubscriptΓ01subscript𝑩0subscriptđ¶0subscript𝐮0subscript^đ‘„0subscriptđ”0subscript𝑱0\displaystyle A_{0}\hat{x}_{0}+B_{0}u_{0}+P_{1}C_{0}^{\rm T}\Gamma_{0}^{-1}(y_%{0}-C_{0}(A_{0}\hat{x}_{0}+B_{0}u_{0})).italic_A start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_B start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT - italic_C start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_A start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_B start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ) .

Hence, (24) holds for k=0𝑘0k=0italic_k = 0. Moreover, since H0subscriptđ»0H_{0}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is positive definite, it follows that P1=H0−1subscript𝑃1superscriptsubscriptđ»01P_{1}=H_{0}^{-1}italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT is also positive definite.

Now, let k≄1𝑘1k\geq 1italic_k ≄ 1.Note that for all 0≀i≀k0𝑖𝑘0\leq i\leq k0 ≀ italic_i ≀ italic_k,

(𝒯i,k+1⁹(x^)−x^i)subscript𝒯𝑖𝑘1^đ‘„subscript^đ‘„đ‘–\displaystyle(\mathcal{T}_{i,k+1}(\hat{x})-\hat{x}_{i})( caligraphic_T start_POSTSUBSCRIPT italic_i , italic_k + 1 end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG ) - over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT )=Ίi,k+1⁹(x^−ℬk+1,iⁱ𝒰k+1,i)−x^iabsentsubscriptΩ𝑖𝑘1^đ‘„subscriptℬ𝑘1𝑖subscript𝒰𝑘1𝑖subscript^đ‘„đ‘–\displaystyle=\Phi_{i,k+1}(\hat{x}-\mathcal{B}_{k+1,i}\mathcal{U}_{k+1,i})-%\hat{x}_{i}= roman_Ί start_POSTSUBSCRIPT italic_i , italic_k + 1 end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG - caligraphic_B start_POSTSUBSCRIPT italic_k + 1 , italic_i end_POSTSUBSCRIPT caligraphic_U start_POSTSUBSCRIPT italic_k + 1 , italic_i end_POSTSUBSCRIPT ) - over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT
=Ίi,k+1⁹(x^−(Ίk+1,i⁹x^i+ℬk+1,iⁱ𝒰k+1,i))absentsubscriptΩ𝑖𝑘1^đ‘„subscriptΩ𝑘1𝑖subscript^đ‘„đ‘–subscriptℬ𝑘1𝑖subscript𝒰𝑘1𝑖\displaystyle=\Phi_{i,k+1}(\hat{x}-(\Phi_{k+1,i}\hat{x}_{i}+\mathcal{B}_{k+1,i%}\mathcal{U}_{k+1,i}))= roman_Ί start_POSTSUBSCRIPT italic_i , italic_k + 1 end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG - ( roman_Ί start_POSTSUBSCRIPT italic_k + 1 , italic_i end_POSTSUBSCRIPT over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + caligraphic_B start_POSTSUBSCRIPT italic_k + 1 , italic_i end_POSTSUBSCRIPT caligraphic_U start_POSTSUBSCRIPT italic_k + 1 , italic_i end_POSTSUBSCRIPT ) )
=Ίi,k+1⁹(x^−𝒯k+1,i⁹(x^i)).absentsubscriptΩ𝑖𝑘1^đ‘„subscript𝒯𝑘1𝑖subscript^đ‘„đ‘–\displaystyle=\Phi_{i,k+1}(\hat{x}-\mathcal{T}_{k+1,i}(\hat{x}_{i})).= roman_Ί start_POSTSUBSCRIPT italic_i , italic_k + 1 end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG - caligraphic_T start_POSTSUBSCRIPT italic_k + 1 , italic_i end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) .

Hence, Jk⁹(x^)subscriptđœđ‘˜^đ‘„J_{k}(\hat{x})italic_J start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG ), given by (19), can be written as

Jk⁹(x^)=‖Ω0,k+1⁹(x^−𝒯k+1,0⁹(x^0))‖P0−12+subscriptđœđ‘˜^đ‘„limit-fromsuperscriptsubscriptnormsubscriptΊ0𝑘1^đ‘„subscript𝒯𝑘10subscript^đ‘„0superscriptsubscript𝑃012\displaystyle J_{k}(\hat{x})=\|\Phi_{0,k+1}(\hat{x}-\mathcal{T}_{k+1,0}(\hat{x%}_{0}))\|_{P_{0}^{-1}}^{2}+italic_J start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG ) = ∄ roman_Ί start_POSTSUBSCRIPT 0 , italic_k + 1 end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG - caligraphic_T start_POSTSUBSCRIPT italic_k + 1 , 0 end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ) ∄ start_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT +
∑i=0k‖yi−Ciⁱ𝒯i+1,k+1⁹(x^)‖Γi−12−‖Ωi,k+1⁹(x^−𝒯k+1,i⁹(x^i))‖Fi.superscriptsubscript𝑖0𝑘superscriptsubscriptnormsubscript𝑩𝑖subscriptđ¶đ‘–subscript𝒯𝑖1𝑘1^đ‘„superscriptsubscriptΓ𝑖12subscriptnormsubscriptΩ𝑖𝑘1^đ‘„subscript𝒯𝑘1𝑖subscript^đ‘„đ‘–subscriptđč𝑖\displaystyle\sum_{i=0}^{k}\|y_{i}-C_{i}\mathcal{T}_{i+1,k+1}(\hat{x})\|_{%\Gamma_{i}^{-1}}^{2}-\|\Phi_{i,k+1}(\hat{x}-\mathcal{T}_{k+1,i}(\hat{x}_{i}))%\|_{F_{i}}.∑ start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ∄ italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - italic_C start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT caligraphic_T start_POSTSUBSCRIPT italic_i + 1 , italic_k + 1 end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG ) ∄ start_POSTSUBSCRIPT roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ∄ roman_Ί start_POSTSUBSCRIPT italic_i , italic_k + 1 end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG - caligraphic_T start_POSTSUBSCRIPT italic_k + 1 , italic_i end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) ∄ start_POSTSUBSCRIPT italic_F start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT .

Next, we expand Jk⁹(x^)=x^T⁹Hk⁹x^+2⁹bkT⁹x^+cksubscriptđœđ‘˜^đ‘„superscript^đ‘„Tsubscriptđ»đ‘˜^đ‘„2superscriptsubscript𝑏𝑘T^đ‘„subscript𝑐𝑘J_{k}(\hat{x})=\hat{x}^{\rm T}H_{k}\hat{x}+2b_{k}^{\rm T}\hat{x}+c_{k}italic_J start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG ) = over^ start_ARG italic_x end_ARG start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT over^ start_ARG italic_x end_ARG + 2 italic_b start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT over^ start_ARG italic_x end_ARG + italic_c start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT, where

Hk≜∑i=0k[Ίi+1,k+1T⁹CiTⁱΓi−1⁹Ci⁹Ίi+1,k+1−Ωi,k+1T⁹Fi⁹Ίi,k+1]≜subscriptđ»đ‘˜superscriptsubscript𝑖0𝑘delimited-[]superscriptsubscriptΩ𝑖1𝑘1Tsuperscriptsubscriptđ¶đ‘–TsuperscriptsubscriptΓ𝑖1subscriptđ¶đ‘–subscriptΩ𝑖1𝑘1superscriptsubscriptΩ𝑖𝑘1Tsubscriptđč𝑖subscriptΩ𝑖𝑘1\displaystyle H_{k}\triangleq\sum_{i=0}^{k}\Big{[}\Phi_{i+1,k+1}^{\rm T}C_{i}^%{\rm T}\Gamma_{i}^{-1}C_{i}\Phi_{i+1,k+1}-\Phi_{i,k+1}^{\rm T}F_{i}\Phi_{i,k+1%}\Big{]}italic_H start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ≜ ∑ start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT [ roman_Ί start_POSTSUBSCRIPT italic_i + 1 , italic_k + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT roman_Ί start_POSTSUBSCRIPT italic_i + 1 , italic_k + 1 end_POSTSUBSCRIPT - roman_Ί start_POSTSUBSCRIPT italic_i , italic_k + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT italic_F start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT roman_Ί start_POSTSUBSCRIPT italic_i , italic_k + 1 end_POSTSUBSCRIPT ]
+Ω0,k+1TⁱP0−1ⁱΩ0,k+1,superscriptsubscriptΩ0𝑘1Tsuperscriptsubscript𝑃01subscriptΩ0𝑘1\displaystyle\hskip 10.0pt+\Phi_{0,k+1}^{\rm T}P_{0}^{-1}\Phi_{0,k+1},+ roman_Ω start_POSTSUBSCRIPT 0 , italic_k + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT roman_Ω start_POSTSUBSCRIPT 0 , italic_k + 1 end_POSTSUBSCRIPT ,(58)
bk≜∑i=0k[Ωi,k+1TFiΩi,k+1𝒯k+1,i(x^i)\displaystyle b_{k}\triangleq\sum_{i=0}^{k}\Big{[}\Phi_{i,k+1}^{\rm T}F_{i}%\Phi_{i,k+1}\mathcal{T}_{k+1,i}(\hat{x}_{i})italic_b start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ≜ ∑ start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT [ roman_Ω start_POSTSUBSCRIPT italic_i , italic_k + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT italic_F start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT roman_Ω start_POSTSUBSCRIPT italic_i , italic_k + 1 end_POSTSUBSCRIPT caligraphic_T start_POSTSUBSCRIPT italic_k + 1 , italic_i end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT )
−Ωi+1,k+1TCiTΓi−1(yi+CiΩi+1,k+1ℬk+1,i+1𝒰k+1,i+1)]\displaystyle\hskip 10.0pt-\Phi_{i+1,k+1}^{\rm T}C_{i}^{\rm T}\Gamma_{i}^{-1}(%y_{i}+C_{i}\Phi_{i+1,k+1}\mathcal{B}_{k+1,i+1}\mathcal{U}_{k+1,i+1})\Big{]}- roman_Ω start_POSTSUBSCRIPT italic_i + 1 , italic_k + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + italic_C start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT roman_Ω start_POSTSUBSCRIPT italic_i + 1 , italic_k + 1 end_POSTSUBSCRIPT caligraphic_B start_POSTSUBSCRIPT italic_k + 1 , italic_i + 1 end_POSTSUBSCRIPT caligraphic_U start_POSTSUBSCRIPT italic_k + 1 , italic_i + 1 end_POSTSUBSCRIPT ) ]
−Ω0,k+1T⁹P0−1⁹Ί0,k+1ⁱ𝒯k+1,0⁹(x^0),superscriptsubscriptΊ0𝑘1Tsuperscriptsubscript𝑃01subscriptΊ0𝑘1subscript𝒯𝑘10subscript^đ‘„0\displaystyle\hskip 10.0pt-\Phi_{0,k+1}^{\rm T}P_{0}^{-1}\Phi_{0,k+1}\mathcal{%T}_{k+1,0}(\hat{x}_{0}),- roman_Ί start_POSTSUBSCRIPT 0 , italic_k + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT roman_Ί start_POSTSUBSCRIPT 0 , italic_k + 1 end_POSTSUBSCRIPT caligraphic_T start_POSTSUBSCRIPT italic_k + 1 , 0 end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ,(59)
ck≜∑i=0k[∄yi+CiΊi+1,k+1ℬk+1,i+1𝒰k+1,i+1∄Γi2\displaystyle c_{k}\triangleq\sum_{i=0}^{k}\Big{[}\|y_{i}+C_{i}\Phi_{i+1,k+1}%\mathcal{B}_{k+1,i+1}\mathcal{U}_{k+1,i+1}\|_{\Gamma_{i}}^{2}italic_c start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ≜ ∑ start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT [ ∄ italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + italic_C start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT roman_Ί start_POSTSUBSCRIPT italic_i + 1 , italic_k + 1 end_POSTSUBSCRIPT caligraphic_B start_POSTSUBSCRIPT italic_k + 1 , italic_i + 1 end_POSTSUBSCRIPT caligraphic_U start_POSTSUBSCRIPT italic_k + 1 , italic_i + 1 end_POSTSUBSCRIPT ∄ start_POSTSUBSCRIPT roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT
−∄Ίi,k+1𝒯k+1,i(x^i)∄Fi2]+∄Ί0,k+1𝒯k+1,0(x^i)∄P0−12.\displaystyle\hskip 10.0pt-\|\Phi_{i,k+1}\mathcal{T}_{k+1,i}(\hat{x}_{i})\|_{F%_{i}}^{2}\Big{]}+\|\Phi_{0,k+1}\mathcal{T}_{k+1,0}(\hat{x}_{i})\|_{P_{0}^{-1}}%^{2}.- ∄ roman_Ί start_POSTSUBSCRIPT italic_i , italic_k + 1 end_POSTSUBSCRIPT caligraphic_T start_POSTSUBSCRIPT italic_k + 1 , italic_i end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ∄ start_POSTSUBSCRIPT italic_F start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] + ∄ roman_Ί start_POSTSUBSCRIPT 0 , italic_k + 1 end_POSTSUBSCRIPT caligraphic_T start_POSTSUBSCRIPT italic_k + 1 , 0 end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ∄ start_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT .

Note that Hksubscriptđ»đ‘˜H_{k}italic_H start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT can be written recursively as

Hk=subscriptđ»đ‘˜absent\displaystyle H_{k}=italic_H start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT =∑i=0k−1[Ίi+1,k+1T⁹CiTⁱΓi−1⁹Ci⁹Ίi+1,k+1−Ωi,k+1T⁹Fi⁹Ίi,k+1]superscriptsubscript𝑖0𝑘1delimited-[]superscriptsubscriptΩ𝑖1𝑘1Tsuperscriptsubscriptđ¶đ‘–TsuperscriptsubscriptΓ𝑖1subscriptđ¶đ‘–subscriptΩ𝑖1𝑘1superscriptsubscriptΩ𝑖𝑘1Tsubscriptđč𝑖subscriptΩ𝑖𝑘1\displaystyle\sum_{i=0}^{k-1}\left[\Phi_{i+1,k+1}^{\rm T}C_{i}^{\rm T}\Gamma_{%i}^{-1}C_{i}\Phi_{i+1,k+1}-\Phi_{i,k+1}^{\rm T}F_{i}\Phi_{i,k+1}\right]∑ start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k - 1 end_POSTSUPERSCRIPT [ roman_Ί start_POSTSUBSCRIPT italic_i + 1 , italic_k + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT roman_Ί start_POSTSUBSCRIPT italic_i + 1 , italic_k + 1 end_POSTSUBSCRIPT - roman_Ί start_POSTSUBSCRIPT italic_i , italic_k + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT italic_F start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT roman_Ί start_POSTSUBSCRIPT italic_i , italic_k + 1 end_POSTSUBSCRIPT ]
+Ί0,k+1T⁹P0−1⁹Ί0,k+1+CkTⁱΓk−1⁹Ck−Ak−T⁹Fk⁹A−1superscriptsubscriptΊ0𝑘1Tsuperscriptsubscript𝑃01subscriptΊ0𝑘1superscriptsubscriptđ¶đ‘˜TsuperscriptsubscriptΓ𝑘1subscriptđ¶đ‘˜superscriptsubscript𝐮𝑘Tsubscriptđč𝑘superscript𝐮1\displaystyle+\Phi_{0,k+1}^{\rm T}P_{0}^{-1}\Phi_{0,k+1}+C_{k}^{\rm T}\Gamma_{%k}^{-1}C_{k}-A_{k}^{-{\rm T}}F_{k}A^{-1}+ roman_Ί start_POSTSUBSCRIPT 0 , italic_k + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT roman_Ί start_POSTSUBSCRIPT 0 , italic_k + 1 end_POSTSUBSCRIPT + italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT - italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - roman_T end_POSTSUPERSCRIPT italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_A start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT
=\displaystyle==Ak−T[∑i=0k−1(Ωi+1,kTCiTΓi−1CiΩi+1,k−Ωi,kTFiΩi,k)\displaystyle A_{k}^{-{\rm T}}\Big{[}\sum_{i=0}^{k-1}\left(\Phi_{i+1,k}^{\rm T%}C_{i}^{\rm T}\Gamma_{i}^{-1}C_{i}\Phi_{i+1,k}-\Phi_{i,k}^{\rm T}F_{i}\Phi_{i,%k}\right)italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - roman_T end_POSTSUPERSCRIPT [ ∑ start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k - 1 end_POSTSUPERSCRIPT ( roman_Ω start_POSTSUBSCRIPT italic_i + 1 , italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT roman_Ω start_POSTSUBSCRIPT italic_i + 1 , italic_k end_POSTSUBSCRIPT - roman_Ω start_POSTSUBSCRIPT italic_i , italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT italic_F start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT roman_Ω start_POSTSUBSCRIPT italic_i , italic_k end_POSTSUBSCRIPT )
+Ω0,kTP0−1Ω0,k]Ak−1+CkTΓk−1Ck−Ak−TFkA−1\displaystyle+\Phi_{0,k}^{\rm T}P_{0}^{-1}\Phi_{0,k}\Big{]}A_{k}^{-1}+C_{k}^{%\rm T}\Gamma_{k}^{-1}C_{k}-A_{k}^{-{\rm T}}F_{k}A^{-1}+ roman_Ω start_POSTSUBSCRIPT 0 , italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT roman_Ω start_POSTSUBSCRIPT 0 , italic_k end_POSTSUBSCRIPT ] italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT + italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT - italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - roman_T end_POSTSUPERSCRIPT italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_A start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT
=\displaystyle==Ak−T⁹(Hk−1−Fk)⁹Ak−1+CkTⁱΓk−1⁹Ck.superscriptsubscript𝐮𝑘Tsubscriptđ»đ‘˜1subscriptđč𝑘superscriptsubscript𝐮𝑘1superscriptsubscriptđ¶đ‘˜TsuperscriptsubscriptΓ𝑘1subscriptđ¶đ‘˜\displaystyle A_{k}^{-{\rm T}}(H_{k-1}-F_{k})A_{k}^{-1}+C_{k}^{\rm T}\Gamma_{k%}^{-1}C_{k}.italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - roman_T end_POSTSUPERSCRIPT ( italic_H start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT - italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT + italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT .(60)

Defining Pk+1≜Hk−1≜subscript𝑃𝑘1superscriptsubscriptđ»đ‘˜1P_{k+1}\triangleq H_{k}^{-1}italic_P start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT ≜ italic_H start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT,it follows that (23) is satisfied.

Next, to write a recursive update for bksubscript𝑏𝑘b_{k}italic_b start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT, we first write bksubscript𝑏𝑘b_{k}italic_b start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT as bk=bk,1+bk,2+bk,3subscript𝑏𝑘subscript𝑏𝑘1subscript𝑏𝑘2subscript𝑏𝑘3b_{k}=b_{k,1}+b_{k,2}+b_{k,3}italic_b start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = italic_b start_POSTSUBSCRIPT italic_k , 1 end_POSTSUBSCRIPT + italic_b start_POSTSUBSCRIPT italic_k , 2 end_POSTSUBSCRIPT + italic_b start_POSTSUBSCRIPT italic_k , 3 end_POSTSUBSCRIPT, where

bk,1≜∑i=0k−1[Ωi,k+1TFiΩi,k+1𝒯k+1,i(x^i)\displaystyle b_{k,1}\triangleq\sum_{i=0}^{k-1}\Big{[}\Phi_{i,k+1}^{\rm T}F_{i%}\Phi_{i,k+1}\mathcal{T}_{k+1,i}(\hat{x}_{i})italic_b start_POSTSUBSCRIPT italic_k , 1 end_POSTSUBSCRIPT ≜ ∑ start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k - 1 end_POSTSUPERSCRIPT [ roman_Ω start_POSTSUBSCRIPT italic_i , italic_k + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT italic_F start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT roman_Ω start_POSTSUBSCRIPT italic_i , italic_k + 1 end_POSTSUBSCRIPT caligraphic_T start_POSTSUBSCRIPT italic_k + 1 , italic_i end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT )
−Ωi+1,k+1TCiTΓi−1(yi+CiΩi+1,k+1ℬk+1,i+1𝒰k+1,i+1)],\displaystyle\hskip 10.0pt-\Phi_{i+1,k+1}^{\rm T}C_{i}^{\rm T}\Gamma_{i}^{-1}(%y_{i}+C_{i}\Phi_{i+1,k+1}\mathcal{B}_{k+1,i+1}\mathcal{U}_{k+1,i+1})\Big{]},- roman_Ω start_POSTSUBSCRIPT italic_i + 1 , italic_k + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + italic_C start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT roman_Ω start_POSTSUBSCRIPT italic_i + 1 , italic_k + 1 end_POSTSUBSCRIPT caligraphic_B start_POSTSUBSCRIPT italic_k + 1 , italic_i + 1 end_POSTSUBSCRIPT caligraphic_U start_POSTSUBSCRIPT italic_k + 1 , italic_i + 1 end_POSTSUBSCRIPT ) ] ,
bk,2≜−Ω0,k+1T⁹P0−1⁹Ί0,k+1ⁱ𝒯k+1,0⁹(x^0)≜subscript𝑏𝑘2superscriptsubscriptΊ0𝑘1Tsuperscriptsubscript𝑃01subscriptΊ0𝑘1subscript𝒯𝑘10subscript^đ‘„0\displaystyle b_{k,2}\triangleq-\Phi_{0,k+1}^{\rm T}P_{0}^{-1}\Phi_{0,k+1}%\mathcal{T}_{k+1,0}(\hat{x}_{0})italic_b start_POSTSUBSCRIPT italic_k , 2 end_POSTSUBSCRIPT ≜ - roman_Ί start_POSTSUBSCRIPT 0 , italic_k + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT roman_Ί start_POSTSUBSCRIPT 0 , italic_k + 1 end_POSTSUBSCRIPT caligraphic_T start_POSTSUBSCRIPT italic_k + 1 , 0 end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT )
bk,3≜Ak−T⁹Fk⁹Ak−1⁹(Ak⁹x^k+Bk⁹uk)−CkTⁱΓk−1⁹yk.≜subscript𝑏𝑘3superscriptsubscript𝐮𝑘Tsubscriptđč𝑘superscriptsubscript𝐮𝑘1subscript𝐮𝑘subscript^đ‘„đ‘˜subscriptđ”đ‘˜subscript𝑱𝑘superscriptsubscriptđ¶đ‘˜TsuperscriptsubscriptΓ𝑘1subscript𝑩𝑘\displaystyle b_{k,3}\triangleq A_{k}^{-{\rm T}}F_{k}A_{k}^{-1}(A_{k}\hat{x}_{%k}+B_{k}u_{k})-C_{k}^{\rm T}\Gamma_{k}^{-1}y_{k}.italic_b start_POSTSUBSCRIPT italic_k , 3 end_POSTSUBSCRIPT ≜ italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - roman_T end_POSTSUPERSCRIPT italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + italic_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) - italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT .

Note that bk,1subscript𝑏𝑘1b_{k,1}italic_b start_POSTSUBSCRIPT italic_k , 1 end_POSTSUBSCRIPT is the sum of first k−1𝑘1k-1italic_k - 1 terms of summation in (59), bk,3subscript𝑏𝑘3b_{k,3}italic_b start_POSTSUBSCRIPT italic_k , 3 end_POSTSUBSCRIPT is the last term of summation in (59), and bk,2subscript𝑏𝑘2b_{k,2}italic_b start_POSTSUBSCRIPT italic_k , 2 end_POSTSUBSCRIPT is the remaining term outside the summation. Next, note, for all 0≀i≀k0𝑖𝑘0\leq i\leq k0 ≀ italic_i ≀ italic_k, the identities

Ίi,k+1ⁱ𝒯k+1,i⁹(x^i)=Ίi,kⁱ𝒯k,i⁹(x^i)+Ίi,k+1⁹Bk⁹uk,subscriptΩ𝑖𝑘1subscript𝒯𝑘1𝑖subscript^đ‘„đ‘–subscriptΩ𝑖𝑘subscript𝒯𝑘𝑖subscript^đ‘„đ‘–subscriptΩ𝑖𝑘1subscriptđ”đ‘˜subscript𝑱𝑘\displaystyle\Phi_{i,k+1}\mathcal{T}_{k+1,i}(\hat{x}_{i})=\Phi_{i,k}\mathcal{T%}_{k,i}(\hat{x}_{i})+\Phi_{i,k+1}B_{k}u_{k},roman_Ί start_POSTSUBSCRIPT italic_i , italic_k + 1 end_POSTSUBSCRIPT caligraphic_T start_POSTSUBSCRIPT italic_k + 1 , italic_i end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) = roman_Ί start_POSTSUBSCRIPT italic_i , italic_k end_POSTSUBSCRIPT caligraphic_T start_POSTSUBSCRIPT italic_k , italic_i end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) + roman_Ί start_POSTSUBSCRIPT italic_i , italic_k + 1 end_POSTSUBSCRIPT italic_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ,(61)
Ωi+1,k+1ⁱℬk+1,i+1ⁱ𝒰k+1,i+1subscriptΩ𝑖1𝑘1subscriptℬ𝑘1𝑖1subscript𝒰𝑘1𝑖1\displaystyle\Phi_{i+1,k+1}\mathcal{B}_{k+1,i+1}\mathcal{U}_{k+1,i+1}roman_Ω start_POSTSUBSCRIPT italic_i + 1 , italic_k + 1 end_POSTSUBSCRIPT caligraphic_B start_POSTSUBSCRIPT italic_k + 1 , italic_i + 1 end_POSTSUBSCRIPT caligraphic_U start_POSTSUBSCRIPT italic_k + 1 , italic_i + 1 end_POSTSUBSCRIPT
=Ίi+1,kⁱℬk,i+1ⁱ𝒰k,i+1+Ίi+1,k+1⁹Bk⁹uk.absentsubscriptΩ𝑖1𝑘subscriptℬ𝑘𝑖1subscript𝒰𝑘𝑖1subscriptΩ𝑖1𝑘1subscriptđ”đ‘˜subscript𝑱𝑘\displaystyle\hskip 30.0pt=\Phi_{i+1,k}\mathcal{B}_{k,i+1}\mathcal{U}_{k,i+1}+%\Phi_{i+1,k+1}B_{k}u_{k}.= roman_Ί start_POSTSUBSCRIPT italic_i + 1 , italic_k end_POSTSUBSCRIPT caligraphic_B start_POSTSUBSCRIPT italic_k , italic_i + 1 end_POSTSUBSCRIPT caligraphic_U start_POSTSUBSCRIPT italic_k , italic_i + 1 end_POSTSUBSCRIPT + roman_Ί start_POSTSUBSCRIPT italic_i + 1 , italic_k + 1 end_POSTSUBSCRIPT italic_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT .(62)

Using (61) and (62), we can write bk,1=bk,1,1+bk,1,2subscript𝑏𝑘1subscript𝑏𝑘11subscript𝑏𝑘12b_{k,1}=b_{k,1,1}+b_{k,1,2}italic_b start_POSTSUBSCRIPT italic_k , 1 end_POSTSUBSCRIPT = italic_b start_POSTSUBSCRIPT italic_k , 1 , 1 end_POSTSUBSCRIPT + italic_b start_POSTSUBSCRIPT italic_k , 1 , 2 end_POSTSUBSCRIPT, where

bk,1,1subscript𝑏𝑘11\displaystyle b_{k,1,1}italic_b start_POSTSUBSCRIPT italic_k , 1 , 1 end_POSTSUBSCRIPT≜∑i=0k−1[Ωi,k+1TFiΩi,k𝒯k,i(x^i)\displaystyle\triangleq\sum_{i=0}^{k-1}\big{[}\Phi_{i,k+1}^{\rm T}F_{i}\Phi_{i%,k}\mathcal{T}_{k,i}(\hat{x}_{i})≜ ∑ start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k - 1 end_POSTSUPERSCRIPT [ roman_Ω start_POSTSUBSCRIPT italic_i , italic_k + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT italic_F start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT roman_Ω start_POSTSUBSCRIPT italic_i , italic_k end_POSTSUBSCRIPT caligraphic_T start_POSTSUBSCRIPT italic_k , italic_i end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT )
−Ωi+1,k+1TCiTΓi−1(yi+CiΩi+1,kℬk,i+1𝒰k,i+1)],\displaystyle\hskip 20.0pt-\Phi_{i+1,k+1}^{\rm T}C_{i}^{\rm T}\Gamma_{i}^{-1}(%y_{i}+C_{i}\Phi_{i+1,k}\mathcal{B}_{k,i+1}\mathcal{U}_{k,i+1})\big{]},- roman_Ω start_POSTSUBSCRIPT italic_i + 1 , italic_k + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + italic_C start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT roman_Ω start_POSTSUBSCRIPT italic_i + 1 , italic_k end_POSTSUBSCRIPT caligraphic_B start_POSTSUBSCRIPT italic_k , italic_i + 1 end_POSTSUBSCRIPT caligraphic_U start_POSTSUBSCRIPT italic_k , italic_i + 1 end_POSTSUBSCRIPT ) ] ,
bk,1,2subscript𝑏𝑘12\displaystyle b_{k,1,2}italic_b start_POSTSUBSCRIPT italic_k , 1 , 2 end_POSTSUBSCRIPT≜∑i=0k−1[Ωi,k+1TFiΩi,k+1Bkuk\displaystyle\triangleq\sum_{i=0}^{k-1}\big{[}\Phi_{i,k+1}^{\rm T}F_{i}\Phi_{i%,k+1}B_{k}u_{k}≜ ∑ start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k - 1 end_POSTSUPERSCRIPT [ roman_Ω start_POSTSUBSCRIPT italic_i , italic_k + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT italic_F start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT roman_Ω start_POSTSUBSCRIPT italic_i , italic_k + 1 end_POSTSUBSCRIPT italic_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT
−Ωi+1,k+1TCiTΓi−1CiΩi+1,k+1Bkuk].\displaystyle\hskip 20.0pt-\Phi_{i+1,k+1}^{\rm T}C_{i}^{\rm T}\Gamma_{i}^{-1}C%_{i}\Phi_{i+1,k+1}B_{k}u_{k}\big{]}.- roman_Ω start_POSTSUBSCRIPT italic_i + 1 , italic_k + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT roman_Ω start_POSTSUBSCRIPT italic_i + 1 , italic_k + 1 end_POSTSUBSCRIPT italic_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ] .

Similarly, (61) implies that bk,2=bk,2,1+bk,2,2subscript𝑏𝑘2subscript𝑏𝑘21subscript𝑏𝑘22b_{k,2}=b_{k,2,1}+b_{k,2,2}italic_b start_POSTSUBSCRIPT italic_k , 2 end_POSTSUBSCRIPT = italic_b start_POSTSUBSCRIPT italic_k , 2 , 1 end_POSTSUBSCRIPT + italic_b start_POSTSUBSCRIPT italic_k , 2 , 2 end_POSTSUBSCRIPT, where

bk,2,1≜−Ω0,k+1T⁹P0−1⁹Ί0,kⁱ𝒯k,0⁹(x^0),≜subscript𝑏𝑘21superscriptsubscriptΊ0𝑘1Tsuperscriptsubscript𝑃01subscriptΊ0𝑘subscript𝒯𝑘0subscript^đ‘„0\displaystyle b_{k,2,1}\triangleq-\Phi_{0,k+1}^{\rm T}P_{0}^{-1}\Phi_{0,k}%\mathcal{T}_{k,0}(\hat{x}_{0}),italic_b start_POSTSUBSCRIPT italic_k , 2 , 1 end_POSTSUBSCRIPT ≜ - roman_Ί start_POSTSUBSCRIPT 0 , italic_k + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT roman_Ί start_POSTSUBSCRIPT 0 , italic_k end_POSTSUBSCRIPT caligraphic_T start_POSTSUBSCRIPT italic_k , 0 end_POSTSUBSCRIPT ( over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ,
bk,2,2≜−Ω0,k+1T⁹P0−1⁹Ί0,k+1⁹Bk⁹uk.≜subscript𝑏𝑘22superscriptsubscriptΊ0𝑘1Tsuperscriptsubscript𝑃01subscriptΊ0𝑘1subscriptđ”đ‘˜subscript𝑱𝑘\displaystyle b_{k,2,2}\triangleq-\Phi_{0,k+1}^{\rm T}P_{0}^{-1}\Phi_{0,k+1}B_%{k}u_{k}.italic_b start_POSTSUBSCRIPT italic_k , 2 , 2 end_POSTSUBSCRIPT ≜ - roman_Ί start_POSTSUBSCRIPT 0 , italic_k + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT roman_Ί start_POSTSUBSCRIPT 0 , italic_k + 1 end_POSTSUBSCRIPT italic_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT .

It then follows from (59) and (58), respectively, that

bk,1,1+bk,2,1subscript𝑏𝑘11subscript𝑏𝑘21\displaystyle b_{k,1,1}+b_{k,2,1}italic_b start_POSTSUBSCRIPT italic_k , 1 , 1 end_POSTSUBSCRIPT + italic_b start_POSTSUBSCRIPT italic_k , 2 , 1 end_POSTSUBSCRIPT=Ak−Tⁱbk−1,absentsuperscriptsubscript𝐮𝑘Tsubscript𝑏𝑘1\displaystyle=A_{k}^{-{\rm T}}b_{k-1},= italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - roman_T end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT ,
bk,1,2+bk,2,2subscript𝑏𝑘12subscript𝑏𝑘22\displaystyle b_{k,1,2}+b_{k,2,2}italic_b start_POSTSUBSCRIPT italic_k , 1 , 2 end_POSTSUBSCRIPT + italic_b start_POSTSUBSCRIPT italic_k , 2 , 2 end_POSTSUBSCRIPT=−Ak−T⁹Hk−1⁹Ak−1⁹Bk⁹uk.absentsuperscriptsubscript𝐮𝑘Tsubscriptđ»đ‘˜1superscriptsubscript𝐮𝑘1subscriptđ”đ‘˜subscript𝑱𝑘\displaystyle=-A_{k}^{-{\rm T}}H_{k-1}A_{k}^{-1}B_{k}u_{k}.= - italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - roman_T end_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT .

Hence, we obtain the recursive update

bk=subscript𝑏𝑘absent\displaystyle b_{k}=italic_b start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT =Ak−T⁹bk−1−Ak−T⁹Hk−1⁹Ak−1⁹Bk⁹uksuperscriptsubscript𝐮𝑘Tsubscript𝑏𝑘1superscriptsubscript𝐮𝑘Tsubscriptđ»đ‘˜1superscriptsubscript𝐮𝑘1subscriptđ”đ‘˜subscript𝑱𝑘\displaystyle A_{k}^{-{\rm T}}b_{k-1}-A_{k}^{-{\rm T}}H_{k-1}A_{k}^{-1}B_{k}u_%{k}italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - roman_T end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT - italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - roman_T end_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT
+Ak−T⁹Fk⁹Ak−1⁹(Ak⁹x^k+Bk⁹uk)−CkTⁱΓk−1⁹yk.superscriptsubscript𝐮𝑘Tsubscriptđč𝑘superscriptsubscript𝐮𝑘1subscript𝐮𝑘subscript^đ‘„đ‘˜subscriptđ”đ‘˜subscript𝑱𝑘superscriptsubscriptđ¶đ‘˜TsuperscriptsubscriptΓ𝑘1subscript𝑩𝑘\displaystyle+A_{k}^{-{\rm T}}F_{k}A_{k}^{-1}(A_{k}\hat{x}_{k}+B_{k}u_{k})-C_{%k}^{\rm T}\Gamma_{k}^{-1}y_{k}.+ italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - roman_T end_POSTSUPERSCRIPT italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + italic_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) - italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT .

Finally, note that (58) can be used to rewrite (18) as Fkâ‰șHk−1precedessubscriptđč𝑘subscriptđ»đ‘˜1F_{k}\prec H_{k-1}italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT â‰ș italic_H start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT, and hence Hk−1−Fk≻0succeedssubscriptđ»đ‘˜1subscriptđč𝑘0H_{k-1}-F_{k}\succ 0italic_H start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT - italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ≻ 0.Furthermore, since ΓksubscriptΓ𝑘\Gamma_{k}roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is positive definite, it follows from (60) that Hksubscriptđ»đ‘˜H_{k}italic_H start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is positive definite.Therefore, by Lemma 2, the unique minimizer x^k+1subscript^đ‘„đ‘˜1\hat{x}_{k+1}over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT of Jksubscriptđœđ‘˜J_{k}italic_J start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is given by x^k+1=−Hk−1⁹bksubscript^đ‘„đ‘˜1superscriptsubscriptđ»đ‘˜1subscript𝑏𝑘\hat{x}_{k+1}=-H_{k}^{-1}b_{k}over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT = - italic_H start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT, which simplifies to

x^k+1=−Hk−1⁹bk=−Pk+1⁹bksubscript^đ‘„đ‘˜1superscriptsubscriptđ»đ‘˜1subscript𝑏𝑘subscript𝑃𝑘1subscript𝑏𝑘\displaystyle\hat{x}_{k+1}=-H_{k}^{-1}b_{k}=-P_{k+1}b_{k}over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT = - italic_H start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = - italic_P start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT italic_b start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT
=Pk+1[−Ak−Tbk−1+Ak−THk−1Ak−1Bkuk\displaystyle=P_{k+1}\big{[}-A_{k}^{-{\rm T}}b_{k-1}+A_{k}^{-{\rm T}}H_{k-1}A_%{k}^{-1}B_{k}u_{k}= italic_P start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT [ - italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - roman_T end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT + italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - roman_T end_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT
−Ak−TFkAk−1(Akx^k+Bkuk)+CkTΓk−1yk]\displaystyle\hskip 40.0pt-A_{k}^{-{\rm T}}F_{k}A_{k}^{-1}(A_{k}\hat{x}_{k}+B_%{k}u_{k})+C_{k}^{\rm T}\Gamma_{k}^{-1}y_{k}\big{]}- italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - roman_T end_POSTSUPERSCRIPT italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + italic_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) + italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ]
=Pk+1[Ak−TPk−1x^k+Ak−TPk−1Ak−1Bkuk\displaystyle=P_{k+1}\big{[}A_{k}^{-{\rm T}}P_{k}^{-1}\hat{x}_{k}+A_{k}^{-{\rmT%}}P_{k}^{-1}A_{k}^{-1}B_{k}u_{k}= italic_P start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT [ italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - roman_T end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - roman_T end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT
−Ak−TFkAk−1(Akx^k+Bkuk)+CkTΓk−1yk]\displaystyle\hskip 40.0pt-A_{k}^{-{\rm T}}F_{k}A_{k}^{-1}(A_{k}\hat{x}_{k}+B_%{k}u_{k})+C_{k}^{\rm T}\Gamma_{k}^{-1}y_{k}\big{]}- italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - roman_T end_POSTSUPERSCRIPT italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + italic_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) + italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ]
=Pk+1⁹[Ak−T⁹(Pk−1−Fk)⁹Ak−1⁹(Ak⁹x^k+Bk⁹uk)+CkTⁱΓk−1⁹yk]absentsubscript𝑃𝑘1delimited-[]superscriptsubscript𝐮𝑘Tsuperscriptsubscript𝑃𝑘1subscriptđč𝑘superscriptsubscript𝐮𝑘1subscript𝐮𝑘subscript^đ‘„đ‘˜subscriptđ”đ‘˜subscript𝑱𝑘superscriptsubscriptđ¶đ‘˜TsuperscriptsubscriptΓ𝑘1subscript𝑩𝑘\displaystyle=P_{k+1}\big{[}A_{k}^{-{\rm T}}(P_{k}^{-1}-F_{k})A_{k}^{-1}(A_{k}%\hat{x}_{k}+B_{k}u_{k})+C_{k}^{\rm T}\Gamma_{k}^{-1}y_{k}\big{]}= italic_P start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT [ italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - roman_T end_POSTSUPERSCRIPT ( italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + italic_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) + italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ]
=Pk+1[CkTΓk−1yk−CkTΓk−1Ck(Akx^k+Bkuk)\displaystyle=P_{k+1}\big{[}C_{k}^{\rm T}\Gamma_{k}^{-1}y_{k}-C_{k}^{\rm T}%\Gamma_{k}^{-1}C_{k}(A_{k}\hat{x}_{k}+B_{k}u_{k})= italic_P start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT [ italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT - italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + italic_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT )
+(Ak−T(Pk−1−Fk)Ak−1+CkTΓk−1Ck)(Akx^k+Bkuk)]\displaystyle\hskip 10.0pt+\left(A_{k}^{-{\rm T}}(P_{k}^{-1}-F_{k})A_{k}^{-1}+%C_{k}^{\rm T}\Gamma_{k}^{-1}C_{k}\right)(A_{k}\hat{x}_{k}+B_{k}u_{k})\big{]}+ ( italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - roman_T end_POSTSUPERSCRIPT ( italic_P start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - italic_F start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT + italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ( italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + italic_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ]
=Pk+1[CkTΓk−1(yk−Ck(Akx^k+Bkuk))\displaystyle=P_{k+1}\big{[}C_{k}^{\rm T}\Gamma_{k}^{-1}(y_{k}-C_{k}(A_{k}\hat%{x}_{k}+B_{k}u_{k}))= italic_P start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT [ italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT - italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + italic_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) )
+Pk+1−1(Akx^k+Bkuk)]\displaystyle\hskip 40.0pt+P_{k+1}^{-1}(A_{k}\hat{x}_{k}+B_{k}u_{k})\big{]}+ italic_P start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + italic_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ]
=Ak⁹x^k+Bk⁹uk+Pk+1⁹CkTⁱΓk−1⁹(yk−Ck⁹(Ak⁹x^k+Bk⁹uk)).absentsubscript𝐮𝑘subscript^đ‘„đ‘˜subscriptđ”đ‘˜subscript𝑱𝑘subscript𝑃𝑘1superscriptsubscriptđ¶đ‘˜TsuperscriptsubscriptΓ𝑘1subscript𝑩𝑘subscriptđ¶đ‘˜subscript𝐮𝑘subscript^đ‘„đ‘˜subscriptđ”đ‘˜subscript𝑱𝑘\displaystyle=A_{k}\hat{x}_{k}+B_{k}u_{k}+P_{k+1}C_{k}^{\rm T}\Gamma_{k}^{-1}(%y_{k}-C_{k}(A_{k}\hat{x}_{k}+B_{k}u_{k})).= italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + italic_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + italic_P start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT - italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + italic_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ) .

Hence, (24) is satisfied. Finally, since Hksubscriptđ»đ‘˜H_{k}italic_H start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is positive definite, it follows that Pk+1=Hk−1subscript𝑃𝑘1superscriptsubscriptđ»đ‘˜1P_{k+1}=H_{k}^{-1}italic_P start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT = italic_H start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT is also positive definite.∎

Adaptive Kalman Filtering Developed from Recursive Least Squares Forgetting Algorithms (2024)
Top Articles
Latest Posts
Article information

Author: Ouida Strosin DO

Last Updated:

Views: 6328

Rating: 4.6 / 5 (76 voted)

Reviews: 91% of readers found this page helpful

Author information

Name: Ouida Strosin DO

Birthday: 1995-04-27

Address: Suite 927 930 Kilback Radial, Candidaville, TN 87795

Phone: +8561498978366

Job: Legacy Manufacturing Specialist

Hobby: Singing, Mountain biking, Water sports, Water sports, Taxidermy, Polo, Pet

Introduction: My name is Ouida Strosin DO, I am a precious, combative, spotless, modern, spotless, beautiful, precious person who loves writing and wants to share my knowledge and understanding with you.